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Preface
This research presents a merger of the specification and design capabilities of the

VHDL with a known verification method in order to solve the design and verification problem

of sequential circuits. The fruits of this research are a behavioral VHDL model for sequential

circuit specification, a structural VHDL model for sequential circuit design, and a method for

comparing two circuits described using these VHDL models in order to demonstrate circuit

equivalence.

In performing this research I received immeasurable assistance from many people. At
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leadership in directing the nature of my research. Additionally, thanks go to Capt Mark Mehalic

and Major Kim Kanzaid; their guidance and comments surely improved the quality of the

finished product. I would also like to thank the members of the Joint Integrated Avionics

Working Group (JIAWG) Test and Maintenance Bus committee. Their ongoing design effort

played a pivotal role in the development of the behavioral VHDL sequential circuit model.

Further thanks go to my research's sponsors, Capt Jack Strauss and Nelson Estes. Without

their efforts, this this work would surely not have begun. Finally, I would like to thank my wife,
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not have been bearable; BFNO.
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Abstract

There exists an acute need for a methodology by which a circuit can be designed and

validated against its specification before the circuit is fabricated. This thesis presents a merger of the

specification and design capabilities of the Very High Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL) with a verification method in order to solve the design and validation

problem of sequential circuits. Currently, there is no methodology in-use, beyond exhaustive circuit

simulation, which verifies the equivalence of an electronic system either to its specifications or to

another electronic system. This problem is keenly apparent in the Air Force's Advanced Tactical

Fighter program, the Navy's A-12 Fleet Defense Fighter, and the Army's LHX Attack Helicopter

program. Congress has mandated that these vehicles utilize a common avionics architecture

incorporating interchangeable, re-usable system modules. This interchangeability allows a

tremendous amount of system flexibility; each air vehicle's avionics suite can be tailored from a

common architecture into an integrated package that specifically meets the vehicle's combat mission.

But, reusability depends on the equivalence of the system modules which, in this case, will be

manufactured by three separate vendors working from a common system and module design

specification. Currently, their module equivalence can be shown only by an expensive and

exhaustive simulation. This thesis presents an altemative solution for sequential circuit development

based upon the concepts of state equivalence. VHDL provides the capabilities of specification,

design, and simulation for behavioral and structural electronic systems. Because of these features, it

has been embraced by the DoD and has been designated as an IEEE standard. Further, a verification

method exists whereby structural circuit descriptions can be tested for equivalence. This thesis

reports on a proposed behavioral VHDL model for sequential circuit specification, a structural VHDL

model for circuit description, and a software environment developed from UC Berkeley's VERIF

software in order to accept both VHDL models and perform equivalence validation on the circuits

these VHDL models describe.
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Specification and Equivalence Verification

of

Sequential Circuits via VHDL

1 Introduction

There exists an acute need for a methodology by which a circuit can be designed and

validated against its specification before the circuit is fabricated. The Very High Speed Integrated

Circuit (VHSIC) Hardware Description Language (VHDL) provides the capabilities of specification,

debign, and simulation for electronic systems modeled either behaviorally or structurally. Further,

verification methods exist whereby structural and behavioral circuit descriptions can be tested for

equivalence. This thesis presents a merger of the specification and design capabilities of the

VHDL with these verification methods in order to solve the design and verification problem of

sequential circuits. The products are a behavioral VHDL sequential circuit model for sequential

circuit specification, a structural VHDL model for sequential circuit design, and a method for

comparing two circuits described using the-e VHDL models in order to demonstrate circuit

equivalence. This chapter states th present problem, lays down the solution's scope and

approach, discusses expected oenefits, and outlines the thesis presentation.
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1 .1 Problem Statement

Currently, there is no methodology in-use, beyond exhaustive circuit simulation, which

permits the equivalence verification of an electronic system either to '.s specifications or to

another electronic system provided by a different vendor (1). This problem is keenly apparent in

the Air Force's Advanced Tactical Fighter program, the Navy's A-12 Fleet Defense Fighter, and

the Army's LHX Attack Helicopter program. Congress has mandated that these air vehicles utilize

a common avionics architecture incorporating interchangeable system modules (2). This

interchangeability allows a tremendous amount of system flexibility; each air vehicle's avionics

suite can be tailored into an integrated package that specifically meets the vehicle's combat

mission. But, interchangeability depends on the equivalence of the system modules which, in

this case, will be manufactured by three separate vendors working from a common system and

module design specification. Currently, module equivalence can be shown only by an expensive

and exhaustive simulation.

The need for a verification methodology is also apparent in today's Computer Aided

Design (CAD) environrhent. Design error detection and correction, which often occur late in a

digital circuits design phase, cause unexpected, often time-consuming delays in the circuit's

production. By one account, 80% of all errors found during tests of the manufactured circuits are

directly traceable to specification errors that cause deviations from the original design intent (1).

Presently, these errors are detected by simulating the digital circuit's model prior to fabrication or

by testing the manufactured circuit (1). Clearly, there exists an acute need for a methodology by

which a module or a circuit can be designed and verified equivalent to its specification, another

similar module, or a similar circuit.
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1.2 Background

In order to reduce errors in designs and in turn reduce costs and manufacturing time, several

different techniques have been employed within academia to prove that a digital circuit is either

equivalent to its specification or that two digital circuits are oquivalent tu each other without circuit

simulation and before the circuit is fabricated. While the most successful techniques have been

applied to combinational logic circuits, several techniques for sequential logic circuits involving

memory devices have recently been explored. Additionally, several CAD languages have been

developed which attempt to address specific needs of sequential circuit design. None of these

techniques are production quality CAD tools. Chapter 2 reviews these techniques.

1.3 Scope

The objective of this research is to produce a method for comparing two sequential circuits

described via VHDL in order to demonstrate circuit equivalence. The two circuits can be

described at the behavioral and/or structural design levels. This objective can be divided into two

goals.

The first goal is to determine the appropriate VHDL language constructs to permit succinct

structural and behavioral modeling of a sequential circuit. The products of this goal are two VHDL-

based models, one for behavioral specification and another for structural sequential circuit

description. The intention being that both models will prove sufficient for use not only as

contractual documents but also as design tools. The second goal is to apply verification

techniques to sequential circuits which are portrayed using the behavioral and structural VHDL

models. The product is a set of " oftware tools for comparing two sequential circuits described via

the VHDL models in order to prove or disprove circuit equivalence before actual circuit fabrication.

Merging the specification and design capabilities of the VHDL with circuit verification methods

solves the specification, design, and verification problem of sequential circuits.
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1.4 Approach

After studying the features of description languages which can be used for sequential circuit

modeling, similar language structures will be identified in the VHDL. Using these l3nguage

structures, sequential circuits will be modeled and simulated in the VHDL at the behavioral and

structural design levels to ensure that the VHDL models accurately portray the function of the

desired sequential circuits. Further, sample system specifications will be reviewed to determine

what additional specifications can be incorporated into a VHDL model. Finally, once behavioral

and structural VHDL models have been developed and determined appropriate for modeling

sequenitial circuits, a verification technique will be applied to the VHDL circuit models. This last

step, in order to be a proof of concept, may require a restricted version of the VHDL models

derived for sequential circuit specification and design.

1.5 Expected Gain

If this country is to remain technologically competitive in not only electronic system design but

also CAD system development, the current design process of design verification by expensive

and exhaustive simulation must change. Clearly merging the specification and design capabilities

of VHDL with circuit verification methods offers a quicker and cheaper altema.ve to simulation.

Additionally, this methodology permits the DoD to improve the procurement process by providing

to the vendor complete system or circuit specifications in VHDL rather than an ambiguous English

text. The vendor can check a system or circuit design directly against the VHDL specification

rather than indirectly against the vendors interpretation of an English text specification.

1.6 Thesis Overview

This thesis is presented in six chapters. Chapter 2 shows the results of a literature review of

past and ongoing verification efforts and outlines several state machine description languages.
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Also, Chapter 2 provides a description of state machine modeling and verification. Finally,

Chapter 2 presents key features of VHDL useful for sequential circuit design and details the

algorithms employed by the chosen verification software. Chapter 3 details the proposed VHDL

models for state machine modeling. Chapter 4 explains the manner in which the chosen

verification tool was adaptud to VHDL. Chapter 5 presents sequential circuit designs utilizing the

models of Chapter 3 and their verification results. Finally, Chapter 6 concludes with an overall

summary and recommendations for future research efforts.
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2 Background

This chapter provides background information concerning sequential circuits and

presents the solution for this research. It is divided into three sections. The first describes

sequential circuits; the second reviews past and ongoing verification efforts; and the third

presents the solution to the stated problem of design verification.

2.1 Sequential Circuits

A sequential circuit is a circuit which, when given a set of inputs, produces an output

which is a function not only of the inputs but also of an internally stored state of the circuit (3).

Further, the state of the sequential circuit may change given a set of inputs and present state

condition. A state machine (or finite state machine) is an abstract model used to describe a

sequential circuit. Mathematically, simple state machines may be represented as (4):

A set of states represented by Q,

A finite set of input symbols, I,

A finite set of output symbols, Z,

A mapping 8 representing I x Q into Q, also known as a next state function, and,

A function co representing I x 0 onto Z, (for the Mealy machine) or

a function co representing Q onto Z (for the Moore machine) also known as an output

function.

State machines are pictured using directed graphs. This representation is called a state transition

graph and is depicted in Figure 2.1. Additional state machine terms are defined as follows (3):

A state is a vector comprised of bits which may take on the values zero (0), one (1), or

don't care (x). The number of bits in a state vector equals the number of memory devices in the

state machine.
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A minterm is a state vector which contains only the values one and zero.

One state covers another state if bits of one state are either equal to the corresponding

bits of the second state or the bits of the first state are Don't Cares (x).

Transitions occur when the function 5 produces a new state for the machine. Transitions

are also called edges.

8//0

, sk 

8/c

Q 3( x Q -> Q I Q >
/Ix Q -> Z

Figure 2. 1. State Transition Graph.

The state machine of Figure 2.1 represents a Mealy machine. A Mealy machine is non-

deterministic in that its output(s) depend not only on present state information but also its input(s).

A Moore machine is deterministic in that its output(s) are dependent only on the present state of

the machine. Figure 2.2 portrays this difference between machines. Figure 2.2(a) is a non-

deterministic Mealy machine; Flgure2.2(b) is a deterministic Moore. The terms state machine and

sequential circuit will be used interchangeably throughout this thesis.

Additional types of state machines are hierarchical machines; and concurrent (hybrid)

state machines. The hierarchical machines contains states in which additional state machines are

nested, as depicted in Figure 2.3; hybrid machines contain multiple "processes" active within

each state.
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)Combinational Memory Combinationali Output(s)
Inu~s___ Logic Elmn~) Logic -

(a)

Input(s) Combinational Memory Output(s)
S Logic Element(s)

(b)

Figure 2.2. State Machines.

Figure 2.3. Hierarchical State Machines.
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2.2 Verification

In order to reduce errors in designs and in turn reduce costs and manufacturing time,

several different techniques have been employed to prove that a digital circuit is either equivalent

to its specification or that two digital circuits are equivalent to each other without circuit simulation

and before the circuit is fabricated. While the most successful techniques have been applied to

combinational logic circuits, several techniques for sequential logic circuits involving memory

devices have recently been explored. This section reviews past and ongoing verification

research. The first section presents this work and its results; the second provides a more in depth

explanation of selected verification methodologies.

2.2.1 Verification Efforts

Verification can be decomposed into two divergent methodologies: one attempts to

prove the equivalence of a circuit to its specification through the application of formal mathematical

methods to both the circuit and its specification; the other attempts to prove equivalence via

searches or manipulations of alternate representations of the circuifs design space. Examples of

both methods and their results are presented here. In regards to their results, one author's

remarks are most telling: 'The major stumbling block to formal verification methods is

SKEPTICISM' (5).

Formal verification methods have already seen success in verifying the equivalence of

various circuits allowing them to be fabricated prior to simulation (5). The British VIPER

microprocessor was completty verified using the predicate-logic based, High Order Language

(HOL) environment which is now available in the public domain. Produced at Cambridge

University, the VIPER chip was extensively tested between specification levels. With exhaustive

simulation only at the lower level portions of the design, no errors were found in the chip after the

first fabrication. Similarly, Cambridge University developed TAMARACK, a processor similar to a

pdp- 11, which functioned correctly after the first fabrication with no pre-fab simulation.
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Several Computer Aided Design (CAD) tools are available to aid in formal verification (5).

HOL, mentioned above and now in the public domain, comes with its own attached functional

language. LAMBDA, a commercially available product, also uses predicate logic, but incudes a

schematic capture feature. Additionally, it maintains specifications and tasks through logic

decomposition.

Other methods of verification which lend themselves toward sequential circuit verification

are under investigation. Recent work at UC Berkeley has developed two methods for verification:

algorithmic path tracing within the sequential circuit's state transition graph and a state transition

graph enumeration method which can be suported by interactive simulation(6, 7). No designs

verified by these two methods have been reported fabricated at this time in the literature.

2.2.2 Verification Methods

Three verification methods are presented: symbolic logic, temporal logic, and state

transition graph enumeration equivalence. Symbolic logic methods are used for predicate logic

systems such as HOL The verification method choosen for this research is similar in concept to

the state transition graph method and is presented in Section 2.3.2.

2.2.2.1 Symbollc Logic Verification

Simply put, proof of equivalence via symbolic logic involves proving the equivalence of

the boolean equations that describe the state machine to either its specification's boolean

equations or to the boolean equations that describe another state machine (8). This technique is

analogous to the trigonometry problem of proving the equivalence of the two sides of a

trigonometric equation, such as tan(2AB) = sin(A)cos(B) + cos(B)sin(A) , by the proper

application of trigonometric identities.

Symbolic logic verification is hierarchical in nature (8). This means that it can be used to

check chip, board, or system equivalence. The key to its use is that each chip, board, or system
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level design must be representable via symbolic logic (8). Variables, constants, boolean, and

arithmetic operators are permitted within the representation. The following example of a simple

set/reset flip-flop constructed of nand gates (taken from (8)) is presented to demonstrate features

of symbolic logic verification. In the example, the symbolic logic conditional operator notation has

been simplified to facilitate reading; further information is available in (8).

The desired set/reset flip-flop functions are such that, when SET is false (logically a 0)

and RESET is true (a logic value of 1), the output, Q, becomes true. Additionally, when SET is

true and RESET is false, the output becomes false; and, when both SET and RESET lines are

true, there is no change in the output. This functionality is symbolically specified as:

if not(SET) and RESET then Q <- 1;
if SET and not (RESET) then Q <- 0;
if SET and RESET then Q <- Q;

The symbolic specification points out a key feature of symbolic logic verification. The

specification does not dictate nor imply the implementation of the design; it simply specifies the

functionality of the system. Figure 2.4 shows a typical implementation of the set/reset flip-flop.

SET
0

RESET X

Figure 2.4. Typical Set/Reset Flip-Flop Implementation.
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Translated to symbolic logic, the design is:

Q <- not (SET and X);

X <- not (RESET and Q);

In this representation, there is a total dependence of the design to the equations. A different

design that implements the same functions would have different equations. To prove the

equivalence of these two representations, verification proceeds by manipulating the logic

equations to prove that the circuit description equations are equivalent to the specification

equations. Continuing with the example, the verification steps are:

Q <- not(SET and X);

stepl:
Q <- not (SET and not (RESET and Q)); Substitution for X

step2:
Q <- not(SET) or (RESET and Q); DeMorgan's law

step3:
if not (SET) then Q <- 1 or (RESET and Q); Expansion
if SET then Q <- 0 or (RESET and Q);

step4:
if not(SET) then Q <- 1; Boolean Reduction
if SET then, Q <- RESET and Q;

step5:
if not(SET) then Q <- 1; Expansion
if SET and RESET then Q <- (1 and Q);
if SET and not(RESET) then Q <- (0 and Q);

step6:
if not(SET) then Q <- 1; Boolean Reduction
if SET and RESET then Q <- Q
if SET and not(RESET) then Q <- 0;

At this point, the verification is complete; the equations derived from the original circuit

description are equivalent to the specification. In other words, the circuit correctly implements the

desired function.
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This example shows that symbolic logic verification is a viable approach; but, it is not as

simple as it seems. Although artificial intelligence programming techniques (in the computer

languages Prolog or Lisp (1, 9)) are often employed to manipulate the symbolic equations, the

verification process is not completely automatic. Often, the verification program requires

considerable assistance from the designer to choose the correct theorem, substitution,

expansion, or reduction to use in the next step (10). Additionally, several verification systems

have been capable of verifying circuits only at the gate level (9). Because of these drawbacks,

symbolic logic verification has been found to be effective on small sequential circuits utilizing four

to six latches (7, 9).

2.2.2.2 Temporal Logic Verification

Although similar in approach to symbolic logic, temporal logic adds the important notion of

time to hardware descriptions (11). Figure 2.5 graphically shows a waveform that can be

expressed in temporal logic as (IX, IX)2 . This equation indicates that the signal X rises and falls

twice during the time period of interest. Additionally, two key operators are always, 0, and

sometimes, *. As an example, the equation N(Y = --,(X)) indicates that Y is always the not of X;

while the equation *(Y - -, (X)) indicates that Y is sometimes equal to the not of X. These

constructs along with conventional logic operators permit reasoning about signals over time (11).

1.0- 1.0 0 0 0 0 0

0.8 - 0.8-

•0.6- 2 0.6-

0.4- 0.4-

0.2- 0.2-

0.0 - 0.0-

0 2 4 0 2 4

TIME TIME

Figure 2.5 Continuous and Temporal Logic Waveform Representations.
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Some derivatives of temporal logic also include the concepts of fairness, safety, and

liveliness (10, 12). Fairness is a feature of interactive verification whereby the user enters a set of

constraints that will be valid infinitely often along some path within the sequential circuit (10). An

example would be a constraint which specifies that a process which continually requests access to

a hardware resource, such as memory, will eventually be granted access to that hardware

resource. The properties of safety and liveliness are properties specified by the user to be

checked against the circuit's description (12); they can be thought of as further specifications

beyond the functional specification. Safety properties specify that nothing wrong happens in the

circuit; while liveliness properties specify good circuit actions. The concepts of *wrong" and

.good' are relative to the specific circuit design.

Once the circuit has been described in temporal logic, several techniques are available to

prove its equivalence to a specification or to another circuit expressed in temporal logic. As in

symbolic logic verification, each method involves the manipulation of the logic equations until

equivalence is shown. An important difference lies, though, in the equations' manipulation

methodology and in the source of the temporal logic equations. Early verification efforts involved

hand-generated temporal logic descriptions at the circuit specification level and at the gate level.

Equivalence was then proven by direct manipulation of the temporal logic equations or their

equivalent binary decision diagrams (10). Binary Decision Diagrams (BDD) are acyclic graph

representations of boolean functions which provide a canonical form of the temporal logic

functions (13). The circuits are shown equivalent if and only if their BDDs are equivalent.

Recently, significant work has been performed to automatically develop the temporal

logic equations directly from a high level programming language or from a gate level design (13).

The Compositional State Machine Language (CSML) allows for a hierarchical definition and

interconnection of modules, compilation of the design into functional PLAs or PALs, and

extraction of the equivalent temporal logic description (14). The automatically generated
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equations can then be verified with the specification descriptions or against the gate level design

(10). CSML provides high-level language teatures such as conditional and looping statements (if

and while). Additionally, CSML allows for the concurrency of hardware operation with a parallel

construct which permits concurrent statement evaluation (14). As a drawback, circuits described

in CSML must be synchronous and deterministic in nature; additionally, CSML supports only two-

level logic (zeros and ones) (14). The first requirement mandates one clock signal within the

circuit; the second narrows the design space to Moore state machine descriptions. While the third

requirement neglects the capabilities of multi-level logic (zeros, ones, strong, weak, charge, pre-

charge, high-impedance, etc) exploited in other languages such as the DoD's VHSIC Hardware

Descriptibon Language (VHDL). Finally, unlike VHDL, the CSML software environment does not

support digital simulation of the circuit design.

2.2.2.3 State Transition Graph Enumeration Equivalence.

Proof of equivalence by state enumeration can be accomplished several ways (7). One

method involves extracting the state transition graphs (STG) from two sequential machine

descriptions and then showing their equivalence by exclusive-oring the STGs. Another

approach extracts a STG from the first sequential circuit, uses the STG to determine the circuit's

output on-and-off sets, and simulates these on the second circuit; the circuits are equivalent if

the second circuit's outputs match the first's. A final method enumerates not only the inputs but

also the state information of the two sequential circuits; equivalence is shown by differentiating

between these inputs and states. After a brief description of a STG, these approaches are

presented in order.

Figure 2.6 shows a sample STG. The circles indicate states of the sequential machine;

arrow-headed lines indicate transitions between states.
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Figure 2.6. Sample State Transition Graph (STG).

The labels on the transitions, 11/0 for example, indicate input and output conditions during the

transition; the 11 specifies two logic level 1 inputs and the 0 specifies one logic level 0 output.

Each transition is triggered by a clocking pulse which is not shown on the graph. Although this

STG represents a deterministic Moore sequential circuit, the STG verification techniques

presented in this section are also capable of verifying non-deterministic Mealy circuits.

In the first verification method, an STG is enumerated for the first circuit by assuming

output(s) for the first circuit and searching the circuit to determine the input set(s) required to

produce the assumed output(s) (7). The STG generation process is repeated on the second

circuit. These two circuit descriptions can be at the same, or at different, levels of design

abstraction (7). Once the two STGs have been generated, a composite STG is created by

exclusive-oring the two STGs together. If, in the third STG, no path exists between the starting

state and any final states, the two sequential circuits are equivalent. If a path exists, the crcuits

are not equivalent.

The second technique employs the simulation of the first circuit's inputs on the second

circuit. First, a STG is generated for the first circuit in the same manner as the previous technique.

This STG is used to determine input stimuli to apply to the second circuit; don't care signal

information is used to reduce the number of input sets required to test for equivalence. If, during

the simulation, the second circuit's output(s) duplicate the first circuit's, the two are equivalent (7).
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The final technique not only allows for the verification of discrete sequential circuits, but

also permits verification of interacting sequential machines (6). Unlike the previous two STG

methoas, however, this technique requires that the input and the state space be explicitly

enumerated (6). The approach to verification is that of checking for the equivalence of the

reset/starting states of the two sequential circuits (6).

State transition graph verification methods have been shown viable on sequential ci,. uits

ranging from 15 to 250 latches with upwards of 1020 states (6). Both single or interacting,

deterministic or non-deterministic sequential circuits can be verified (6, 7). Also, as opposed to

exhaustive circuit simulation, the STG method verifies circuits in minutes rather than hours (6).

Finally, It permits a versatile circuit description format at the gate, RTL, state table, or specification

levels of design abstraction (7).

2.3 Solution

This section details the solutio , to the verification problem presented by this thesis. The

solution is to marry sequential circuits described via a hardware description language to a known

sequential circuit verification methodology.

2.3.1 Approach

The approach to the verification solution is broken down into two steps. The first step is

to develop a behavioral and a structural modeling method for sequential circuits. Once these

models have been developed, the verification software will be modified to accept as input

sequential circuits described using these two models. The product is a method for comparing two

sequential circuits described via the models in order to prove or disprove circuit equivalence

before actual circuit fabrication. The VHSIC Hardware Description Language (VHDL) will be used

to develop the models and the UC Berkeley verification software tools will be used for verification.

First, the chosen verification tool set is described along with its theory of operation. Second, the
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hardware description language is described with attention given to several key features of the

language.

2.3.2 UC Berkeley Verification Tool Suite

The UC Berkeley verification tool suite consists of two tools: pre-verif and venf. The

pre.verif software is a pre-processor for venf. Graphically, their interaction is shown in Figure 2.7.

Using these two tools, the verification process is as follows. Preverif is invoked twice, once for

each of the two structurally defined sequential circuits which are desired to be verified equivalent

(or non-equivalent). This produces two input files for verif. In these two new files are the covers

and some associated information from the two sequential circuits (the contents of which to be

described in detail shortly). Then, verif is invoked and processes the two files to determine if the

sequential circuits are equivalent. If so, verif exits with the statement

#MACHINES ARE THE SAME

otherwise the machines are not equivalent and verif exits with the statement

#MACHINES ARE DIFFERENT

followed by a set of input vectors (called the differentiating sequence) which, when applied as

inputs to the sequential circuit, step the two machines through their states until the states of the

two machines which exhibit different behaviors are reached.

The UC Berkeley pre._verif and verif software tools are available as source code from UC

Berkeley for a DEC microVAX workstation. The tools are written in the programming language C

and run on the VAX's ULTRIX operating system. ULTRIX is DEC's instantiation of UNIX for their

microVAX workstations.
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This section presents an overview of the theory of operation of the two tools within the

UC Berkeley Verification tool suite. Pre-verif is presented first followed by verif.

2.3.2.1.1 Pre verlf

Pre-verif is a preprocessor for verif which translates a sequential circuit described in the

UC Berkeley netlist into a new file named "verif.input" which contains the output and next state

cover information and associated minterm lists of the sequential circuit (6). For each output and

next state signal within the state machine, pre-verif extracts input and next state covers which

force the output(s) and next state signals to a logical one or zero. Additionally, pre-verif extracts a
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list of input and next state signals which comprise the minterm variables for each output and next

state signal. A final key piece of information extracted by pre verif is the sequential circuits initial

or reset state. This information is stored in the file, verif.input, which is used as the input for verif.

2.3.2.1.2 Verif

Verif takes the cover, minterm, and initial state information generated by pre verif from

the two sequential circuits and performs the actual verification algorithms. Two algorithms contain

the core of the verification process: DifferentiateStates and NewFanoutEdge. The main

verification procedure is described in the following pseudo-code where M1 and M2 are represent

sequential circuits one and two respectively (6).

verify_equivalence( Ml, M2

RI RESET State of Ml;
R2 = RESET State of M2;
Flag - DifferentiateStates ( RI, R2 );
if ( Flay ) {

/* Machines are different */
PrintDifferentiateSequenceo;

else f
/* Machines are the same */
Print Valid Invalid State(;

The first algorithm, DifferentiateStates, determines equivalence on a state by state

basis. Starting with the initial state of each machine, verif sets an output of the first machine to a

logical one. It applies the Path Oriented Decision Making (PODEM) algorithm to determine what

input vector(s) are required to produce a logical one on machine one', output. Next, verif sets the

corresponding output of machine two to a logical zero. Applying PODEM to the second machine,

verif derives a second set of input vectors which produce a logical zero on machine two's output.
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These two sets of input vectors are compared; if a vector is common to both sets of Input vectors,

the two machines are not equivalent and the verification process terminates.

Should the two sets of input vectors not have any vectors in common,

DifferentiateStates reverses the above process. The output of the first machine is set to a logical

zero and the output of the second machine is set to a logical one. Sets of input vector(s) are

derived for each machine and, as before, are compared for similar vectors. If a vector is common

between the two sets, the two machines are not equivalent and the verification process

terminates.

If the two states do not fail the input vector tests, then next states within the sequential

circuits are calculated via the NewFanoutEdge routine and the DifferentiateStates routine is

repeated recursively. This process follows paths within the state transition graphs which

represent the two machines terminating a path only if the path doubles back on itself or if the inital

state is reached. The path tracing is depicted in Figure 2.8. Because each verification starts at the

intial state of each machine, the UC Berkeley reports that the verification problem is defined as the

verification of the equivalence of the two sequential circuits' intial (or reset) states.
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Figure 2.8. An Example STG (6).

These algorithms ares presented as the following pseudo-code where S1 and S2 are states of

the two sequential circuits (6).

Differentiate-States( SI, S2)

if ( state pair (SI, S2) have already been examined)

return ( Machines-Same );

/* Find input combination which differentiates S1 & S2 *

Flag - Find -Differentiating_Input ( SI, S2 )

if ( Flag)(
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/* such an input has been found */
if ( inputs is not a don't care for Si or S2 )

if ( output values are not don't cares )

Store input as part of differentiating
sequence;
if (no Don't Care sequences

return ( Machines Different );

Store State pair ( Si, S2 ) in current search path;

/* Find input combination giving a new fanout edge */
DecisionTree = NULL;
S'Il = NewFanoutEdge( S1 );
S'2 = NewFanoutEdge( S2 );

while ( DecisionTree !- NULL
Flag = DifferentiateStates ( S'1, S'2 );
if ( Flag ) f

/* such an input has been found */
if ( inputs is not a don't care for S1 or S2)
if ( output values are not don't cares ) (

Store input as part of differentiating
sequence;
if (no Don't Care sequences

return ( Machines Different );

S'Il = NewFanoutEdge( S'Il );

S'2 = NewFanoutEdge( S'2 );

/* If this point is reached, machines are equal */
return ( MachinesSame );

2.3.2.2 Verification Results

This verification method has shown promising results; it has been tested on

various sequential circuits gathered from academia and industry sources with impressive results.

Sample results are presented in Figure 2.9. The CPU times are for a VAX 11/8800 computer.

The quoted units of time are s for seconds and m for minutes.
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Circuit #Inputs #Outputs #Valid States #Edges CPU Time
cse 7 7 16 141 .49s
sse 7 7 13 58 .18s

sand 1 1 9 32 183 1.34s
planet 7 19 48 142 .99s
sbc.4 33 24 54 19308 115s
sbc.1 16 1 65 1782 7.46s

scf 27 54 115 274 3.57s
tic 3 5 400 2000 9.07s

mclc 1 1 6 35 917 5.17s
sbc.2 31 1 2040 2474094 563m
sbc.3 27 1 2764 1451108 140m

Figure 2.9. Verification Results (6).

2.3.3 VHDL

VHDL stands for the Very High Speed Integrated Circuit (VHSIC) Hardware Description

Language. Originally developed by the Department of Defense's Very High Speed Integrated

Circuit (VHSIC) Program for use as a government standard (15), it has been adopted as an IEEE

standard hardware description language (16). This section explains not only why VHDL was

chosen as the specification and design language for this research but also describes some of

VHDL's key features.

2.3.3.1 Why VHDL

As mentioned above, VHDL is the standard hardware description language for both the

government and the IEEE. As such, it is intended to be used not only as a design language, but

also it is intended as a spacification language. VHDL provides language constructs capable of

expressing both a structural design and a behavioral specification. As a standard, its use within

this research effort promotes future acceptance of any products of this research work.

VHDL was not selected purely because it is both a DoD and an IEEE standard. The

language was compared against other aesign languages which are used in academia to describe

sequential circuits. From these comparisons, it became readily apparent that VHDL Is quite
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capable of describing sequential circuits both structurally and behaviorally. Two languages, State

Machine Language (SML) and Compositional State Machine Language (CSML), provide many

equivalent language constructs as VHDL (14, 17). Notably among them are conditional, loop, and

concurrent statements. Additionally, the UC Berkeley circuit netlist format used by the verification

software contains a subset of the information present in an equivalent circuit described in

structural VHDL.

Further, work performed by both private industry and academia has shown that VHDL is

capable of portraying sequential circuits. Two CAD tool developers are currently providing a

sequential circuit VHDL code generation ability within their graphics-based CAD design

environment (18, 19). The VHDL code which is produced by many designers to represent

sequential circuits falls into two categories: separate procedure calls which represent each state

and inline coding which groups the entire sequential circuit into one large monolithic block of

code. Without delving into explicit explanations oi the VHDL constructs, examples of these

VHDL sequential circuit specification styles are represented in Figure 2.10.
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process ( NEXTSTATE ) begin

STATE <= NEXTSTATE;

if STATE = SO then

NEXTSTATE <- SI;
Outputl <= 'I';

ProcedureStateA( signal list ; else if STATE = S then

ProcedureStateB( signal list ); NEXT STATE <= S2;

ProcedureState_B( signal_list Output2 <= '1.';

ProcedureStateC( signal_list ); else if STATE = S2 then

ProcedureStateD( signal_list ~NEXTSTATE <= SI;
Outputl < '0';

ProcedureState_E( signal_list ); Output2 <= '0';

ProcedureStateF( signallist end if;

end if;

(a) end if;

end process;

(bi)

Figure 2.10. Two Current VHDL Sequential Circuit Specification Styles.

Unfortunately, there are drawbacks in both code portions of Figure 2.10. The code of Figure

2.10(a) prevents the reader from developing any high level view of the sequential circuit. The

contents of the procedure calls can be located in separate files or within the same file; whichever,

anyone reading the code would be required to delve through its entirety in order to derive an

understanding of the state transition graph. Likewise, the code of Figure 2.10(b) requires work

on the reader's part to derive the state transition graph. Although 2.10(b) may appear to

succinctly represent its sequential circuit, as the number of states and transitions grow, the code

becomes all the more harder to interpret. Additionally, the VHDL code of Figure 2.10(b) cannot

express separate, concurrent actions within a state. Existing design tools which produce VHDL

code similar to Figure 2.10 use Computer Aided Design (CAD) based state machine editors which

graphically portray the functionality represented by the VHDL code. Without this CAD aid, the
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VHDL code becomes quite cryptic. One goal of this research is to develop a new behavioral

VHDL sequential circuit modelling style which not only contains the same expressiveness as the

existing VHDL sequential circuit models but also does not rely on any graphics-based CAD

environment for improved understanding.

2.3.3.2 VHDL Features

This section details several of the key features of VHDL. It is not intended as a complete

VHDL tutorial. Further information may be found in (15, 16). The language constructs used by

this research can be separated into two categories: structural and behavioral.

2.3.3.2.1 Structural Features

Components within o NI ioL description are comprised of two parts: the entity and the

architectural body (16' r - m a 'block box "perspective of the system, the entity is the black box

which describes t ie components external interface. The entity provides the input and output

wires (called ports) of the component and a capability of passing various values into the

component. A typical entity is expressed as:

entity foo is
generic (

variablel : integer;
variable2 : real := 3.141592654

po:rt
in 1 in bit '1';
in -2 in integer;
out-1 out bit-vector (2 downto 0

end foo;

This component has three unidirectional "wires:* in_1 and in_2 going into the black box and

out_1 coming out. Of these, in_1 and in_2 are single wires while out_1 is a bundle, or bus, of 3

wires. Two variables, called generics, pass integer and real number information into the black box.
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Additionally, one of the wires and one of the generics are initialized. Additional entity features

may be found in (16).

Once entities have defined the component's black box external interface, netlists of

components may be constructed representing the operation of a particular component. For

example, the half adder of Figure 2.11 can be constructed of 3-input AND gates and one 4-input

OR gate:

gl AND
port map ( Anot, Bnot, C, glout );

g2 AND
port map ( Anot, B, Cnot, g2out );

g3 AND
port map ( A, Bnot, Cnot, g3out );

g4 AND
port map ( A, B, C, g4out );

g5 OR
port map ( glout, g2out, g3out, g4out, SUM );

Anot glou
Bnot gi

C

Anot g2out

Cnot

A

Cnot g

Cnot : g3out

A

Figure 2.11. Half Adder.
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For this example, the negated signals are assumed available at the entity's ports. This netlist of

components representing the internal, gate level functionality of the half adder are "placed inside"

the black box entity via the architectural body construct (16). The architectural body has the form:

architecture STRUCTURAL of half adder is

DZCLARATIVZ BLOCK

begin

gl : AND
port map ( Anot, Bnot, C, glout );

g2 : AND
port map ( Anot, B, Cnot, g2out );

g3 : AND
port map ( A, Bnot, Cnot, g3out );

g4 : AND
port map (A, B, C, g4out );

g5 : OR
port map ( glout, g2out, g3out, g4out, SUM );

end STRUCTURAL;

The architectural bodys declarative block is that portion in which all components and signals are

declared before use. In this case, these declarations would consist of an AND gate, an OR gate,

and the signals gl out, g2out, g3out, and g4out. It is blank here purely for brevity. Additional

architectural body features may be found in (16).

A powerful feature of VHDL is that it is not limited to purely structural representations of

circuits. A functionally equivalent behavior may be placed inside a black box entity's architecture

as:

architecture BEHAVIORAL of half-adder is

begin

SUM <= ( Anot and Bnot and C ) or ( Anot and B and Cnot ) or
(A and Bnot and Cnot ) or (A and B and C );

end BEHAVIORAL;
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This architectural body is functionally equivalent to the structural one depicted above. The "wire"

SUM is assigned the value of the boolean equation:

SUM = A.B.C + A.B.C + A.B.C + A.B.C

With this ability to model circuits structurally or behaviorally (or with a sprinkling of both), VHDL

offers the ability to specify and design electronic systems over a broad spectrum of the design

hierarchy as depicted in Figure 2.12 (15). Additional key features of behavioral VHDL used in this

research effort will be presented in the following section. Additional information may be found in

(15, 16, 20)

System

Chip

Register Transfer Level

Gate

Circuit

Silicon

Figure 2.12. Design Hierarchy (15).

2.3.3.2.2 Behavioral Features

VHDL offers a wide range of constructs for describing the functionality of a component in

a behavioral fashion. Of importance to this research effort are its ability to model actions which

might take place concurrently with other actions within the component's architectural body; two of

these constructs are VHDL's process and block statements (16). Additionally, in order to

determine a signal's (or "wire's") value when more than one language construct is attempting to

place a value on that signal (called driving), VHDL provides resolution functions. Each will be
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covered in this section. Further information regarding these constructs and others available within

VHDL may be found in (15, 16, 20).

Representing the functionality of the entity foo presented above, an architectural body

containing separ te process constructs and and one block construct appears as:

arch-,ecture EXAMPLE of foo is

begin
process ( in 1

internal-variable : integer := variablel;
begin
-- statements go here. See next process.
end process;

process( in 2
begin

out 1 <- "000";
end process;

Al: block ( in 1= '1')
begin

out 1 <= "111";
end block Al;

end architecture EXAMPLE;

In this example, each Construct functions independently of and concurrently with the others

inside the architectural body. Just as for the architectural body, both the process and block

construct have a declarative block and a statement part; for this example the first process contains

a locally declared variable, internalvariable, which is also initialized to the value of the generic

passed in from the component foo's entity generic. Additionally, each construct possesses a

feature which controls the operation of the construct. For the process statement; that feature is a

set of signals contained within parenthesis after the reserved word process ( (in_1) and (in_2)

above). The process construct only operates when a signal within its sensitivity list changes;

otherwise, it sits dormant within the architectural body. For the block construct, a guard statement

( the (in_l '1' ) following the keyword block) signifies a signal GUARD which is set to true if, and

only if, the contents of the guard statement are true. This implied signal GUARD may be used
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within the block to control the block's operation. As an additional feature, process constructs may

appear within block constructs; but not vice-versa. The procedure calls of Figure 2.10(a) may

appear iiiside both process and block constructs. It is the former case which is one method

currently used to model sequential circuits as discussed in 2.2.3.1.

Within the example above, the signal out_1 is driven by one of the process and by one of

the block constructs. Both values cannot be present on the signal (or wire) at the same time.

VHDL provides a resolution function to resolve multiple signal drivers (16). Each time a value is

assigned to a signal which has beer declared with a resolution function, that function is called and

it determines the proper value to place on the signal. A typical example of a user defined

resolution function (which in this case implements a 'wired-or') is:

Function ResolveBits (il : bitvector)
return bit is

begin
for I in il'Range loop

if ( il(I) = 'I' ) then RETURN il(I);
end if;

end loop;
RETURN '0';

end;

Here, the resolution function checks each driver attempting to place a value on the signal. If any

of the drivers are attempting to place a logical '1' on the wire, that value is placed on the wire;

otherwise, a logical '0' is placed on the wire.

The process, block, and resolution function features of VHDL play a key role in the

development of the behavioral VHDL sequential circuit model discussed in the next chapter.

Further information regarding these constructs and others available within VHDL may be found in

(15, 16, 20).
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3 Sequential Circuit Modeling via VHDL

In this chapter, the VHDL models which are used in this thesis effort to support sequential

circuit specification and design are described. Two models were developed; one for behavioral

specification and another for structural design. These two models are capable of supporting a

wide range of sequential circuit types. These types support both synchronous or asynchronous

operation. Because this thesis effort is intended to demonstrate equivalence of sequential

circuits described via VHDL, the behavioral and structural models employ specific VHDL

constructs chosen to facilitate the equivalence demonstration. Hopefully, future revisions of the

validation software will increase the language coverage to full VHDL 1076. The model restrictions

are explained as each model is presented. Additionally, the behavioral model is geared towards

clear specification of a design. Although upon first examination of the behavioral model this may

appear to sacrifice succinctness for verbosity, the underlying requirement of the behavioral model

is to be an easily readable, comprehendible, and stand alone specification. Each model is

presented in the same fashion; first the model's concept is explained followed by an example.

3.1 EIA Conventions

To provide a degree of standardization between the behavioral and structural elements of

a design -- and, for that matter, between entity and architectural revisions of the same design -- the

EIA Commercial Component Model Specification SP-2229 was adopted as a standard

convention. This standard specifies certain design conventions and includes a seven-level logic

value family with supporting resolution, operator, and overloaded operator functions. Although

this standard is intended to define the design's contents and acceptance criteria for commercially

manufactured components, it is quite applicable to this effort. Several deviations were made from
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the standard, but they are explained and justified when presented. The complete EIA VHDL

standard package is attached as Appendix A.

3.2 The Model's VHDL Entity

This section describes the VHDL entity proposed for sequential circuits. It is intended for

use with both the behavioral and structural architectural bodies and is described here to present a

complete picture of the sequential circuit's VHDL model.

3.2.1 Entity Concept

The entity utilized in this effort follows the EIA guidelines with one major exception. The

EIA standard specifies that every signal into or out of an entity should be a scalar signal. This

requirement is levied by the EIA in order to provide a one-to-one correspondence between an

electronic component's signals and that same component's packaging pins. In this thesis effort,

this requirement was relaxed in order to permit vectorized entity ports. This decision is not

contrary to the EIA standard. Logic cells within a component's architecture could readily employ

vectorized ports on their entities as long as the *off-component' ports are scalars. Further, this

port mode choice is bolstered in that at least one commercial vendor, ZYCAD, utilizes vectorized

ports in their logic cell family (21). Finally, allowing vectonzed ports permits a more robust software

interface to the verification software as shall be seen in Chapter 4. As a last comment, VHDL

generics are permitted within the entity as witnessed in the following example, but are currently

ignored by the validation software.

3.2.2 Entity Example

Following the guidelines described above, a typical VHDL entity can be constructed as in

the following example:
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use work.SequentialCircuitPackage.all;
-- This package makes the appropriate type and
-- variable declarations required for the
-- particular state machine. See text below.

use EIA.BASICDEFS.all;
-- The BASICDEFS package is presumed located
-- in a VHDL design library sublibrary named EIA.

entity Sequential-Circuit is
-- generico;

port
input_1 in logic_my : 'X' ;
out 1 out logic_my :- 'X';
o:it 2 out logic_my := 'X';
out 3 inout logic my :- 'X';
RESET in logic_mv :'X;
clock in logic_my 'X'

end Sequential-Circuit;

The Sequential_Circuit_Package package referenced in the above example is used to

enumerate state names, transition labels, constants, a transition resolution function, and any

other variables, constants, functions, or procedures required by the sequential circuit's entity

and/or architectural body. Although several examples are presented in this thesis, the

SequentialCircuitpackage package is intended to be taliored to the specific application.

Further information is provided in Section 3.3.2.1 regarding this package's contents including a

sample package development.

3.3 VHDL Behavioral Architectural Body

This section describes the behavioral VHDL model proposed for specifying sequential

circuits. First, the moders overall concept is described including code fragments which support

its functions followed by an example.
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3.3.1 Behavioral Model Concept

Figure 3.1 represents a simple sequential circuit: two possible states and one possible

transition between the two states. The depicted sequential circuit is comprised of two

components -- states and transitions.

AO States

B Transitions

Figure 3.1. Simple Sequential Machine and Its Component Pieces.

Utilizing VHDL's block and process constructs, an architectural specification based on the state

diagram may be decomposed into these same two components. Using this methodology, all

transitions between states are handled by one VHDL process; state activities are handled by

separate VHDL blocks, one per state. The partitioning of state to state transition information into

one VHDL process permits a more succinct description the circuit's state machine diagram than

those methods discussed in Section 2.2.3.1. This concept wil be further detailed in Section

3.3.1.1. Any additional actions, such as clock synchronization, global reset or set, test circuitry,

etc, may also be included as concurrent VHDL blocks within the behavioral architecture. Using

this method, the behavioral architectural body's skeleton form for the entity Sequential-Circuit is:

architecture behavioral-body of Sequential-Circuit is

-- Declarative Block

begin
process ( transition

begin
end;
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FIRST:block ( Present State = FirstState
begin
end;

Second:block ( PresentState = SecondState
begin
end;

nth block:block ( Present State = nth State
begin
end;

process ( clock
begin
end;

RESETBLOCK:process ( RESET
begin
end;

end behavioralbody;

By using sensitivity lists on processes and guard statements on blocks, the processes and blocks

function concurrently. The contents of the processes and blocks within the context of the

behavioral model are described in the following sections.

This methodology was chosen in that it presents the design as an assemblage of smaller

pieces -- basically states and transitions -- while at the same time each piece succinctly specifies its

own actions. Transitions, states, and other concurrent actions are described as follows.

3.3.1.1 Transition Process

The transition process withir the behavioral architectural specification is used not only to

resolve all state-to-state transitions of the sequential circuit, but also to present in simple fashion a

skeletal structure of the overall sequential circuit. The former is required for the machine to

function; the latter succinctly presents the overall machine in a quite human-readable form. In

terms of design specification, the ease in extracting the overall machine diagram is paramount -

no CAD based software tool is required to graphically clarify the state machine design as required
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in other sequential circuit specification styles. Separating the state-to-state transition from its

respective state provides a clear method to provide a 'snapshot" of the design. In other words, a

designer can readily sketch the sequential circuits state machine diagram from the transition

process block.

Figure 3.2 shows a sample sequential machine. For this example, only state-to-state

transitions are labeled; no output signal lines are present. Further, the existence of transition,

PresentState, and NextState signals, whose types are enumerated in the

SequentialCircuitPackage included in the entity description, are assumed. Visibility into this

package is accomplished by the appropriate VHDL use statement at the architecture's entity. The

types enumerated in the SequentialCircuitPackage are:

Type Transition Conditions is (
NoTransition,
gotoFirstState,
gotoSecondState,
gotoThirdState

Type States is
UnknownState,
FirstState,
SecondState,
ThirdState

NoTransition and UnknownState are provided for the situation where no transition occurs

between states and for power-up when the machine is in an unknown, or uninitialized, state. With

this information, the skeletal sequential machine can be readily constructed from the transition

process.
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gotoThirdState

gooScod ae gotoThirdSat

First Second t {Third

gooFirst S ta t  e gotoSecond-tt

gotoFirstState

Figure 3.2. Skeletal State Machine.

A VHDL transition process representing this machine is:

process ( transition ) begin
case PresentState is
when First State =>

case transition is
when gotosecondState =>

Next State <= Second State;
when gotoThirdState =>

NextState <- Third-State;
when others =>

end case;

when Second State =>
case transition is

when gotoFirst state =>
Next State <- FirstState;

when gotoThird state =>
NextState <= ThirdState;

when others =>
end case;

when Third State =>
case transition is

when gotoFirst state =>
Next State <= First State;

when gotoSecondstate ->
Next State <- SecondState;

when others =>
end case;

when Unknown State =>
case transition is

when gotoFirststate ->
Next State <- FirstState;

when others ->

end case;

end case;
end process;
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Although this transition process reveals no information concerning the internal workings of the

machine's states, its apparent from this example that it clearly describes the overall machine

diagram - a very useful feature for creating a lucid design specification.

3.3.1.2 State Blocks

The individua; states of the sequential circuit are represented by VHDL block constructs.

For the simple Moore or Mealy sequential circuit, these blocks simply set the values of the output

signal(s) and test for the transition condition(s) into another machine state. More complex designs

may contain multiple concurrent activities represented as VHDL processes operating within the

state's block. In the extreme, this behavioral model allows hierarchical state machines whereby

entire state machines may be nested within state blocks.

To permit this type of operation two conditions must be met by the state block. For the

first condition, each signal which is driven by more than one state block must be provided with two

features. Each multiply-driven signal must have a bus resolution function. An example transition

resolution function used throughout this research is:
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Function TransitionResolution (il : TransitionConditionsvector)
return TransitionConditions is

begin
for I in il'Range loop

RETURN il(I);

end loop;
RETURN NoTransition;

end;

This function assumes that one, and only one, state block will be making an assignment to the

Transition signal. This is guaranteed by requiring that any non-executing state must disconnect

its signal driver from the Transition signal by the assignment of null (as shown in the state block

example to follow).

The second condition to meet requires that each state block's operation oe aetermined

by the value of a guarded signal which checks the present state of the sequential circuit. The

guard signal will be true only if the the circuit's present state is the same state represented by the

block. Processes within the state block check this guard signal and execute only when the guard

statement is true. Given this, a simple state example which assigns the value '0' to its output

(represented by Machine-output) and transitions into a second state when the input signal is a

*11" vector is:

FIRST:block (PresentState - FirstState) begin

process (GUARD, INPUT signals) begin
if GUARD then

Machine-output <- '0';
if INPUT signals - "11" then

Transition <- gotoSecondState;
end if;

else
transition <- null;
Machine-output <- null;

end if;
end process;

end block FIRST;
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In this example, the state "operates' when its guard statement,

PresentState = FirstState

is true. If false, the process assigns null to both transition and output signals.

More complex state blocks may include one or more concurrent process blocks; or, in the

extreme, a state machine represented by its own transition process and state blocks. A multiple

process state block could appear as:

READInstruction: block (Present-State = READInstructionState) begin
process (GUARD) begin

if GUARD then
Control <= C9_C3;

else
Control <= null;

end if;
end process;

process (Clock)
variable clockcount : integer := 0;

begin
if GUARD and negedge( clock ) then

clock count :- clock count + 1;
if clock-count - 2 then

clock count := 0;
Transition <= gotoIRgets DR OP;

end if;
else

Transition <- Null;

end if;
end process;

end block READInstruction;

In this example, the first process (senstve to the state's guard statement) simply assigns an

output to the Control line. The second process (sensitive to the negative edge of the clock and

checking the value of GUARD on each execution) counts two clock pulses before making the

transition assignment out of the READInstruction state. Note that both processes assign null to

the Control and Transition signals during the else clause of their conditional statements. This

requirement is levied by the chosen transition resolution functions.
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By permitting multiple processes or nested blocks within the state block, the behavioral

model allows for a flexible design style -- hierarchical decomposition is easily achieved. But, one

must be careful in using the model not to deviate from the model's primary intent: clear behavioral

specification.

3.3.1.3 Additional Concurrent Actions

This section describes any additional concurrent blocks or processes that may be

included in the behavioral architectural specification. This is not an all inclusive set of additional

concurrent processes or blocks -- these are the essential elements to complete the proposed

behavioral VHDL model. Although a designer could easily add any number of additional

processes or blocks, succinctness and clarity should be maintained.

As stated earlier, this behavioral model supports both synchronous and asynchronous

operation. This feature is accomplished by the following process. Operating concurrently with

the transition process and state blocks, this process synchronizes the state transitions to the

clock.

process (clock) begin
if (clock = '2' and clock'event)

then PresentState <= NextState;
end if;

end process;

By removing this process from the sequential circuit's architectural body and changing the

concurrent transition process' signal assignment statement from:

NextState <- some-state;

which assumes that the variable PresentState is assigned in the clock process tc:

PresentState <- somestate;

the sequential machine becomes asynchronous. Appendix B contains an asynchronous

example.
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Addibonally, a reset or initialize capability can be provided in a like manner. Another

process operating concurrenfly with the transition process and state blocks provides this global

reset and initialize capability:

-- initialize and reset capability
RESETBLOCK:block (RESET = '1') begin

process (GUARD) begin
if GUARD then

Transition <= goto_First State;
else

Transition <= null;

end if;
end process;

end block RESETBLOCK;

Again, the model's capabilities are up to the individual designer, these simple cases have

been presented only as example.
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3.3.2 Behavioral Model Example

While simple in concept, the VHDL behavioral model is capable of specifying many

different types of sequential circuits: Moore, Mealy, "hierarchical* Moore and Mealy, and "hybrid"

machines. The "hierarchical" machine implies state machines nested within states of the

sequential circuit; the hybrid machine implies multiple concurrent processes within the states of

the state machine. All these machines may be either synchronous or asynchronous. The

following example is a synchronous control unit for a simple eight-instruction CPU. Chapter 5 and

Appendix B contains further examples of various types of sequential machines designed using

this behavioral model.

3.3.2.1 CPU Controller

The following example taken from (22) is a CPU controller intended to operate as a

controller for an eight-instruction CPU. The CPU is to perform the following instructions:

LOAD X transfer contents of memory location X into accumulator.
STORE X transfer contents of accumulator to memory location X.
ADD X Add contents of memory location X to contents of

accumulator and store in accumulator.
'4D X Logical AND the contents of memory location X with the

contents of accumulator and store in accumulator.
JUMP X Unconditionally branch to the instruction stored in memory

location X.
JUMPZ X If the accumulator equals zero (as specified by the zero

flag), branch to the instruction stored in memory
location X.

COMP Complement the accumulator's contents and store in
the accumulator.

RSHIFT Right-shift the contents uf the accumulator and store in
the accumulator.

Given this instruction set, Figure 3.3 presents a block diagram of the CPU as specified in (22).

One hardware constraint not depicted in Figure 3.3 demands that all micro-operations require one

clock cycle except for memory accesses which require two clock cycles. Finally, control signals

must remain valid for the entirety of the micro-operation. The goal, then, is to design a sequential

circuit which performs the control unit functionality as depicted in Figure 3.3.
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The first step in the design process is to develop the control unit's entity description. This

is accomplished simply by matching signals depicted in Figure 3.3 to ports on the entity.

Additionally two assumed signals, reset and dock, which are not shown in the figure, are included

in the control unit. The dock signal will be used to synchronize the sequential circuit's state

transitions and control signals; reset will be used to initialize or force the control unit into a known

initial state. Further, the reset signal will be developed as an asynchronous signal not dependent

on the clock.

AC = 0

- Arithmetic- CO (add)
logic C1 (and)

C3 C4 circuits C2 (comp)

C3 C 12
Main uRD L P' -C

memory D C 6

M R

C10Oro U nit C2

Flag

Figure 3.3. Block Diagram of the Eight- Instruction CPU (22).
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The entity description is then:

use work.BASICDEFS.all;
-- Again, BASICDEFS is the EIA's BASICDEF package.

use work. CPUpackage.all;
-- The CPU's SequentialCircuitPackage.

entity CPUCONTROLLER is
-- generic ();
port( instruction in instructions := NOP

CLOCK in logic mv;
RESET in logicmy
ZERO FLAG in logic my;
Control-bus out logic mv vector bus (12 downto 0)

"Xxxxxxxxxxxxx"

end;

The ports are defined as follows. Instruction is an enumerated set of instructions. The

instructions type will be developed shortly in the SequentialCircuitPackage named

CPU-Package. Clock, RESET, and ZEROFlag are all multi-value logic scalar signals. Finally,

Controlbus is a multi-value logic vector of signals representing the CPU's control signals C12,

C11. CO. Figure 3.4 shows the control signal to CPU micro operation relationship.

Control Signal Micro-operation

CO AC <- AC + DR
Cl AC <- AC AND DR
C2 AC <- NOT AC
C3 DR <- M(AR) - READ M

C4 M(AR) <- DR = WRITE M
C5 DR <- AC
C6 AC <- DR
C7 AR <- DR(ADR)
C8 PC <- DR(ADR)
C9 PC <- PC + 1
C10 AR <- PC
Cll IR <- DR(OP)

C12 RIGHT-SHIFT AC

where AC = Accumulator
DR - Data Register
AR = Address Register

PC - Program Counter
OP - Op Code
ADR - Address

Figure 3.4. Control Signal to CPU Micro-operation Relationship (22).
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Next, a state diagram must be derived from the behavior of the sequential circuit. This

behavior is shown in Figure 3.5 (22). It's important to note that at this point in the behavioral

architecture's development, the design can be written several ways. One method produces a

"hybrid* Moore sequential circuit where each micro-operation represents a state of the sequential

circuit. An alternative method uses a nested state machine approach. Here, the top-level state

machine would have two states: Fetch and Execute. These two states break the CPU's behavior

into two distinct phases. Implemented in this manner, the Fetch and Execute states would

contain their own state machines each issuing respective control signals synchronized with the

proper clock cydes. As a final alternative, the behavior could be developed as a state machine

possessing, at a minimum, eight states. Each state represents one member of the CPU's

instruction set of LOAD, STORE, ADD, AND, JUMP, JUMPZ, COMP, and RSHIFT. The

behavioral model presented in this thesis is quite capable of modeling the controller in these

different abstractions of its behavior. For the sake of a simple example, however, the first method

will be developed: each micro-operation will represent a state of the sequential circuit. Given this,

a state machine diagram representing this design is shown in Figure 3.6. Not shown are each

state's RESET transitions into the "AR <- PC state."

The SequentialCircuitPackage can be developed directly from the state machine

diagram. Named CPU_package for this example, this package enumerates the states, transition

conditions, and instructions for the controller. Additionally, it declares ancillary constants and

functions. Thn CPUpackage, along with the entirety of the CPU controller's VHDL code is

presented in Appendix B.

Once the CPU-package has been developed, the skeletal VHDL code which represents

the CPU controller can be fleshed out from the clock and reset processes, a transition process,

and eleven state blocks. The skeletal structure is:
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architecture BEHAVIORAL of CPU CONTROLLER is

begin

CLOCKSYNCH:process (clock)

begin
end CLOCK SYNCH;

RESETBLOCK:process (RESET)

begin

end;

process (transition)

begin

end;

ARgetsPC:block (PresentState - ARgetsPCState)

begin
end ARgetsPC;

READInstruction:block (PresentState - READInstructionState)

begin

end READ Instruction;

RIGHTSHIFAC:block (PresentState - RIGHT SHIF ACState)

begin

end RIGHT SHIF AC;

end BEHAVIORAL;

The ClockSYNCH and RESETBLOCK processes are similar to those presented earler in this

chapter. For completeness, ths -.re included in Appendix B. Of prime importance, now, is the

development of the transition
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Figure 3.5. Controllers Behavioral Operation (22).
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AR <- PC

READ
Instruction

PC <- PC + 1

A -ot C T DR,

go 
<o_ IRRget) s DR_

OAR XgetsDRADRR

ARtoAC -etsNOTAC, C<-NTA

gotoRIGHSHIFTAC

Figure 3.6. CPU Controller State Machine Diagram.

process. This process can be taken directly from the state machine diagram. Not labeled in the

figure, transitions are:

No-Transition,
goto _RESET,
goto_ AC getsDR,
goto AC getsAC_plusDR,
goto AC gets AC and_DR,
gotoIR gets -DR -OP,
gotoAR gets -DR -ADR,
gotoAR getsPC,
goto -AC -getsNOTAC,
goto RIGHT -SHIFTAC,
got o-Write M,

goto oREADM,
gotoDR,_gets_-AC,
got o_READI NSTRUCT ION, and
got oJUMP

Following the format described in Section 3.3. 1.1 and recording the transitions from state to state,

the transition process is of the form:
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process ( Transition ) begin

case PresentState is

when ARgetsPCState =>

case Transition is
when gotoRESET =>

Next State <= ARgetsPCState;
when others ->

NextState <= READINSTRUCTIONState;
end case;

when READ INSTRUCTIONState =>

case Transition is
when goto_IR_gets DR OP =>

NEXTSTATE <= IRgetsDROPState;

when gotoRESET =>

NextState <= AR gets PC State;

when others =>

end case;

when IR_getsDROPState ->

case Transition is
when gotoARgetsDRADR =>

NEXT-STATE <= ARgets DR ADRState;

when gotoAR_gets_PC ->

NEXTSTATE <= ARgetsPCState;

when goto JUMP =>

NEXTSTATE <= JUMPState;

when gotoAC_getsNOT AC=>
NEXT_STATE <= AC_getsNOTACState;

when goto RIGHT SHIFT AC->
NEXTSTATE <= RIGHTSHIFTACState;

when gotoRESET ->
Next.State <- ARgetsPCState;

when others ->

end case;

-- Remainder of transition process deleted for
-- clarity's sake. See Appendix B.

when others ->
end case;

end process;
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Finally, the state blocks can be fleshed out. Two representative states, AR-getsPC and

READM, are presented to exemplify the controller's behavioral development. Again, the

controller's complete VHDL code is presented in Appendix B along with a sample simulation

report of its operation.

The first state, ARgetsPCState, sets C10 equal to '1' and all other control lines equal

to a '0.' Additionally, transitions are made unconditionally from this state to either itself (the

RESET condition) or into the READinstruction state. RESET is handled globally by the reset

process; but, the Transition signal must be set by the AR..gets PCState. Furthermore, when

not in the state, the drivers on the signals Transition and Control must be assigned null values.

The VHDL code representing this state is:

-- AR_getsPC state
AR_getsPC: block (PresentState - ARgetsPCState) begin

process (GUARD) begin
if GUARD then

Control <= C10; -- C10 defined in CPU_package
Transition <= gotoReadInstruction;

else
Transition <= null;

Control <- null;

end if;
end process;
end block ARgetsPC;

The READINSTRUCTIONState is slightly more complex and is a good example of the

behavioral moders specification capabilities. As in the previous state example, the control signal

must be set ; a straightforward process. Any memory access, however, must take two dock

cycles to account for the slower nature of the CPU's memory. Because

READINSTRUCTIONState accesses memory, this two dock cycle time delay is accomplished

by an additional process within the state block that counts clock pulses (in this case negative

edges) and only permits the transition signal to take place after two dock cycles have elapsed.
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The function negedge0 is defined in the EIA's BASICDEFS package included in Appendix A.

The READINSTRUCTIONState's VHDL code is:

-- READ INSTRUCTION state

-- This state not only reads the instruction from memory,

-- but also increments the PC.
READInstruction: block (Present-State = READInstructionState)
begin

process (GUARD) begin

if GUARD then
Control <= C9_C3; -- Defined in CPU_package.

else
Control <= null;

end if;
end process;

process (Clock)
variable clock-count : integer := 0;

begin
if GUARD and negedge( clock ) then

clock count := clock count + 1;
if clock count - 2 then

clock count := 0;
Transition <= goto_IR_getsDROP;

end if;
else

Transition <= Null;
end if;

end process;

end block READInstruction;

Following this methodology, the VHDL code for the remaining states is constructed in a similar

manner. It is apparent from this example that this behavioral model not only permits a straight-

forward construction method but also provides a dear presentation of the sequential circuifs

behavior. The complete VHDL code and a sample simulation report for the CPU controller is in

Appendix B.

3.4 VHDL Structural Architectural Body

This section describes the structural VHDL moo,; ior designing sequential circuits. First,

the logic gate selection and their selection rationale are explained followed by an explaination of
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the architectural body's structural layout and overview of allowed language constructs. Finally, an

example using the defined logic gates and structural architecture is presented.

3.4.1 Structural Model Concept

The components chosen for the structural model are directly related to the capabilities of

UC Berkeley's verification tools: Senum, PreVerif, and Verif. These programs' input format can

be compared to a structural VHDL description in that their input file formats describe a netlist of

components. Those components recognized by the UC Berkeley tools consist of inverters,

ANDs, NANDs, ORs and NORs. Additionally, two flip-flops are supported: docked and

asynchronous D flip-flops. To serve as a proof of concept, then, the structural VHDL model was

choosen to closely follow the UC Berkeley input format; entities have been described paralleling

the recognized components. Additionally, simplistic architectures that mimic the component's

functional behavior have been produced to support VHDL simulation. These architectures do

not include propagation delay or other timing information; but "generic hooks" are provided for

future work. Two sample components follow: an AND gate and a docked D flip-flop; a complete

list of components along with their VHDL code is provided in Appendix C. As described in

Section 3.2.1, all entities use vectorized entity ports where appropriate. This typing is not

contrary to the EIA standard and is quite appropriate for these logic devices.

First, the AND gate:

uee work. BASICDEFS. all;
-- the EIA basicdefs package

entity ANDm is
generic(

propagationdelay : time := 0 ns

port ( Inl : in logic mvvector
outi : out logic_my :- 'U'

end ANDm;
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As for all components, a behavioral architecture was developed purely to permit VHDL simulation.

The AND gate's archtecture is:

architecture BEHAVIORAL of ANDm is
begin

outl <- andbw( Inl ) after propagation-delay;

end BEHAVIORAL;

The function and_bwo is defined in the EIA's BASICDEFS package.

The second example is a clocked D flip-flop. Again, its architectural body was developed

to support VHDL simulabon. It is represented as:

use work. BASICDEFS.all;

-- the EIA basicdefs package

entity D ff is
generic ( propagationdelay time := 0 ns );
port (

D in : in logic_my : 'U';
Q out : out logic mv := 'U';
CLK : in logic_my : 'U';
Clear : in logic_mv := 'U';
SET : in logic_mv 'U'

end Dff;

architecture BEHAVIORAL of D ff is

begin
process (CLK)
begin

if (CLK'event and CLK - '1') then
if ((Clear - '1') and (SET - '1')) then

Q_out <- 'X' after propagationdelay; end if;

if ((Clear - '0') and (SET - '1')) then
Q_out <- 'I' after propagationdelay ; end if;

if ((Clear - '1') and (SET = '0')) then
Q_out <- '0' after propagationdelay; end if;

if ((Clear - '0') and (SET - '0')) then
Q_out <- D in after propagationdelay; end if;

end if;
end process;

end BEHAVIORAL;
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The currently permitted components and their function are:

INVERTER single input, single output inverter
AND2 two input AND gate.
ANDm vectorized input AND gate
OR2 two input OR gate
ORm vectorized input OR gate
NAND2 two input NAND gate
NANDm vectorized input NAND gate
NOR2 two input NOR gate
NORm vectorized input NOR gate
D_ff Clocked D flip-flop with Set and Clear
D ff noclk Asynchronous D flip-flop with SET and Clear

3.4.2 The Structural Architectural Body

The structural architectural body performs two roles. First, it completely specifies the

sequential circuit in VHDL. This permits testing via the VHDL software environment. Second, by

accomplishing the first goal, it contains the basic information required by the Senum, Preverif,

and Verif software. This is accomplished via the component netlist, the initialization statements,

and the D flip-flops. The initialization statements allow the UC Berkeley software access to the

machine's initial state; the D flip-flops provide state information.

3.4.2.1 Instantiated Components

Instantiated components are declared in the VHDL norm:

name : component_name
generic map ( genericassignments );
port map ( port_assignments );

Currently, only positional association of the signal to port assignments is permited. A sample

component is:

invl : inverter
port map (Q2, Q2not);
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3.4.2.2 Bus Support

Busses within a design are required when vectorized-input logic gates are used. They

are declared as logic_myvector type in the architecture's declarative block and comprised of the

concatenation of scalar signals within the architecture. An example is:

BUS <= instruction & Q1 & Q2not;

The bus is then used as an input to the vectorized logic gates:

gatel: ANDm
port map ( BUS, gatel_out );

3.4.2.3 Initialization

In order to property simulate via VHDL or verify via the UC Berkeley software, the

sequential circuits initial or starting state must be known. This can be accomplished several ways

in VHDL Multiplexed logic driving the flip-flops, SET and CLEAR lines on the flip-flops, etc - but

each clearly specifies the hardware and its interconnections. The chosen approach provides the

initial state information while not specifying the initialization method. Initialization is accomplished

via signal assignment statements within the architecture. Two methods are permited. Each

method assigns "initial values" to the flip-flop outputs (designated as q's); this initial value is

removed after the first clock triggers the flip-flop after some timedelay. The following examples

set the initial state of the six flip-flop circuit to "101001". The first example explicity sets the intial

state at simulation start; the second when the entity port signal "INITIALIZE" is a logical one:
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Example One:

Qinit <= "i01001", "ZZZZZZ" after time-delay;
qO <- Qinit (0);
ql <= Qinit (I);
q2 <= Qinit (2);
q3 <= Qinit (3);
q4 <= Qinit!,4) ;

q5 <= Qinit (5);

Example Two:

with INITIALIZE select
Qinit <- "101001" when '1',

"ZZZZZZ" when others;
qO <= Qinit(0);
ql <= Qinit(1);
q2 <= Qinit(2);
q3 <- Qinit(3);
q4 <= Qinit(4);
q5 <= Qinit (5);

3.4.3 Structural Model Example

The following example is an implementation of a sequence detector using AND-OR logic.

The circuit is intended to detect the input bit string "1 001." Figure 3.7 shows the state machine

diagram which models this circuit. From the diagram, the machine possesses four states which are

implemented as two flip-flops. Further, state variable assigment is as follows:

Starting State 00

Detected 1 01

Detected 0 11

Detected Second 0 10

Figure 3.8 shows the schematic diagram of one implemetation of the sequence detector using D

flip-flops and AND-OR gates.
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Figure 3.7. Sequence Detector State Diagram.
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From Figure 3.8, the entity description is straighforward:

use WORK.basicdefs.all;

entity SequenceDetector is
-- generic ( );

port (
Xin in logic-mv := 'U';

CLOCK in logic mv 'U';

Zout out logicmy := 'U';
SET in logicmv 'U';

CLEAR in logic_my 'U'

end SequenceDetector;

Following the model guidelines, the architectural body sans declarative block follows.

The complete VHDL Sequence Detector description along with test bench and sample simulation

report are contained in Appendix C. Additionally, Appendix C contains a behavioral equivalent

model using the proposed behavioral model of Section 3.3. Both the structural and behavioral

designs were demonstrated equivalent via VHDL simulation on the same test bench. Both VHDL

simulation results are included in Appendix C.

First, because of the vectored inputs to the AND and OR gates, signals internal to the

structural description are declared within the architectural body's declarative blocK. These signals

are:

signal YI, Y2, QI, Q2 : logic my := 'U';

signal Xnot, Qlnot, Q2not,
ANDl_output : logic_my := 'U';

signal ANDl_input, AND2_input,
ORlinput logic mv vector (1 downto 0) :- "UU";

signal AND3_input logic mvvector (2 downto 0)
:- "UUU" ;

signal Qinit : WiredOutputs logic mvvector (1 downto 0)
"UU";
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Next, the initialization signal is constructed as:

Qinit <- "101001", "ZZZZZZ" after 10ns;

qO <- Qinit (0);
q1 <- Qiit (1);
q2 <- Omit (2);
q3 <= Qinit (3);
q4 <= Qinit (4);
q5 <= Qinit (5);

Finally, the following VHDL code reflects the schematic diagram of Figure 3.8.

inv1 inverter
port map (Q2, Q2not);

inv2 :inverter

port map (Xin, Xnot);

inv3 :inverter

port map (Q1, Qinot);

-- Logic to derive Y1 and YO:

ANDi input <- Q1 & Q2not;

ANDI: ANDm
port map ( ANDi input, ANDi-output )

ORI-input <= Xin & ANDJ_output;

ORi ORm
port map ( ORi input, Y1 )

AND2_input <- Xnot & Q1;

AND2 :ANDm
port map ( AND2_input, Y2 )

--LOGIC to derive Zout

AN'D3_input <- Xin & Qinot & Q2;

AND3 :ANIm
port map (AND3_input, Zout )

--Registers

FF1 D-ff
port map (Y1, Q1, CLOCK, CLEAR, SET )

FF2 D-ff
port map (Y2, Q2, CiLOCK, CLEAR, SET )

The entire VHDL- code for this example can be found in appendix C.
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4 Verification Software

This chapter not only de.;cribes the modifications made to the existing UC Berkeley

verification software in order for this software to utilize VHDL, but also, details the translator

created for this thesis in order to translate behavioral to structural VHDL. The software

modifications made enable the pre_verif software to accept structural VHDL designs expressed in

the structural format of Chapter 3; the translator transforms sequential circuit specifications

expressed in the behavioral VHDL model of Chapter 3 into an equivalent structural VHDL design.

This new structural description can then be verified against another structural description. First

the verification software environment is presented overviewing the relationship of the software

components to the verification process. Then, the preverif modifications are presented followed

by the behavioral to structural (b2s) translator software.

4.1 The Verification Software Environment

This section describes the verification software environment consisting of UC Berkeley's

preverif and verif software tools and the b2s software. An example verification process of two

sequential circuits, one described using the behavioral VHDL model and the other using the

structural VHDL model, is used to describe the verification software environment. Figure 4.1

represents the functional relationships of the software components of the verification

environment. The verification proceeds as follows. As depicted in Figure 4.1, the behavioral

model is contained in file 1; the structural model in file 2. First, the behavioral model is translated

into a structural model via the b2s software. Next, preverif generates a verif input file from the

new structural model of the behavioral description. Preverif is executed again, but now a second

verif input file is generated from the second structural model contained in file 2. Finally, the verif

software is executed on the two verif input files to show the equivalence or non-equivalence of
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the two sequential circuits. Refer to Appendix D for a more in-depth step through of the

verification process.

4.2 Structural Translation

The structural VHDL translation by pre verif is precipitated by the notion that a structural

VHDL description contains the requisite information contained in a similar design expressed in the

original pre_verif UC Berkeley input netlist format. This section is divided in two parts. The first

shows that the preverif input netlist format contains information equivalent to that of a similar

VHDL description; the second provides both an explanation of the modifications made to

pre-verif to accept a VHDL description and a detailed format for a VHDL description accepted by

the new preverif.
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4.2.1 VHDL mappings to UC Berkeley Netlist

A preverif input file presents a structural description of a sequential circuit. The file

contents can be divided into seven types of information which are:

comment lines (denoted by the symbol #),

combinational logic gate instantiations (denoted by the symbol g),

input signals (denoted by the symbol i),

output signals (denoted by the symbol o),

next state information (denoted by the symbol n),

present state information (denoted by the symbol p), and,

initialization information (denoted by the symbol I).

The input file is position sensitive regarding these symbols in that the first character on each new

line must be with one of these seven symbols. Additionally, the first line of a pre-verif input file

must contain the circuit name as:

name circuitname

where circuit_name is the user defined name for the sequential circuit.

Inputs to the sequential circuit are defined as:

i circuit_input_1 circuitinput2 ... circuit_input-n

where circuitinputl through circuit inputn are unique names defining the sequential circuit's

input signals.

Circuit outputs are defined in a like manner:

o circuitoutput_1 circuitoutput2 ... circuitoutput_n

where circuit outputl through circuitoutput n are unique names defining the sequential

circuit's output signals.

A combinational logic element is defined as:

gname TYPE input_1 input_2 ... inputn ; output
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where name is a unique user defined name to identify the particular logic element. TYPE is the

element type: BUF (for buffer), AND, OR, NOT (for inverter), NOR, and NAND. The logic element

may have any number of inputs (as signified by input1 input2 ... inputn) and only one output (as

signified by output). Input and output lines must have unique names and are differentiated as

input or output signals by a semi-colon. Those signal names before the semi-colon are inputs to

the logic element; the signal name after is the output. Components may have any number of

input signals but must have one, and only one, output.

A latch contains information concpmring its present and next state. The latch's present

state is its output line and its next state ic s input line. A dock line is not included in the UC

Berkeley format. The two UC Berkeley lines to describe a latch are:

ps q1
nl yl

These lines define the latch as:

--0 Latch

yl ql

Additionally, each latch's initial state must be set. This is accomplished by the I line with boolean

logic Os (zeros) or 1s (ones). By setting the latch's initial state, the overall initial state of the

sequential circuit is also set.

The following short example utilizes each of preverif s various types. The example

represents a sequential circuit that cycles through four states issuing a '1' output upon return to its

initial state.
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name Up_counter
#define inputs and outputs
i xl x2
o z

#combinational logic
gl not xl ; xlnot
g2 not x2 ; x2not
g3 not ql ; qlnot
g4 not q2 ; q2not

g5 and xlnot x2 ql ; and5

g6 and xl x2not ql ; and6
g7 and xl x2not q2not ; and7
g8 or and5 and6 and7 ; yl

g9 and xl q2 ; and9
glO and x2 q2 ; andlO
gll and xlnot x2 ql ; andll
g12 or and9 andlO andll ; y2

g13 and xlnot x2not qlnot q2 ; z

#first latch
ps ql
ns yl

#second latch
ps q2
ns y2

#initialization
I
00

Constructs within a VHDL structural design can be directly mapped to the input format

detailed above. These mappings are presented first, followed by a complete VHDL structural

model equivalent to the previous example sequential circuit expressed in UC Berkeley's format.

A VHDL entity description contains, at a minimum, the component's name and any input

and output ports. The pre._verif format of:

name Up_counter
#define inputs and outputs
i xl x2
o z
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can be represented in VHDL utilizing EIA's basicdefs package to define port types as:

use work.BASICDEFS.all;
entity Up_counter is

-- define inputs and outputs

port( xl in logic_my;

x2 in logic my;
z out logic my;
q inout logic mv

end;

Further, component instantiations expressed as:

g4 not q2 ; q2not

can be represented in the VHDL structural model as:

g4 : inverter
port map( q2, q2not );

In the case where a component has multiple inputs, the VHDL model allows signal concatenation

permitting generic multiple input devices to be used. An example in the UC Berkeley format is:

g5 and xlnot x2 ql ; and5

Where xl not, x2, and q1 are the input signals to the AND gate g5. Using a generic-width input

component as detailed in Chapter 3, this component instantiation can be expressed In VHDL as:

newsignal <- xlnot & x2 & ql;
g5 : ANDm

port map( newsignal, and5 );

Latches may be represented several ways (J-K, T, D, etc). For this effort all latches are

represented as both synchronous or asynchronous D flip-flops. This clocking assumption is valid

in that the UC Berkeley Input format assumes the same; however, a clock signal line Is not present
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in the UC Berkeley format but is required in the equivalent VHDL description. The clock line not

only fully specifies the synchronous sequential circuit, but also permits simulation using the VHDL

software support environment. Further, two additional signals offered in the VHDL D flip-flop

description are the SET and CLEAR lines. These lines allow a finer control of the VHDL

description than that offered in the UC Berkeley format. A latch described first in pre verifs and

then in VHDUs format is:

ps q2
ns y2

FF1 : d ff
port map( y2, q2, CLOCK, SET, CLEAR );

Finudly, circuit initialization expressed in UC Berekely format as:

I
00

can be expressed in VHDL in one of two ways:

Qinit <- "101001", "ZZZZZZ" after time-delay;
qO <= Qinit (0);
ql <= Qinit (i);
q2 <- Qinit (2);
q3 <- Qinit (3);
q4 <- Qinit(4);
q5 <= Qinit (5);

or

with INITIALIZE select
Qinit <- "101001" when '1',

"ZZZZZZ" when others;
qO <- Qinit(0);
ql <- Qinit(i) ;

q2 <= Qinit (2);
q3 <- Qinit (3);
q4 <- Qinit (4);
q5 <- Qinit (5);
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In either case, the outputs of the flip-flops are set to an initial or reset value. The first example sets

the flip-flops to their initial state upon the start of simulation; the second sets the flip-flops

whenever the entity's INITIALIZE port is a logic '1' value.

A complete VHDL translation of the sequential circuit described earlier in this section

utilizing UC Berkeley's format is then:

entity Up_counter is
-- define inputs and outputs
port( xl in logic_my;

x2 in logic_my;
z out logic_mv;
CLOCK : in logic_my;
INITIALIZE : in logic my

end;

architecture STRUCTURAL of Upcounter is

component inverter
generic( propagationdelay : time 0 ns );
port (

inl : in logic mv 'U';
outl : out logic_mv 'U'

end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL);

component ANDm
generic( propagation delay : time := 0 ns );
port(Inl in logic vector_my;

outl out logic my := 'U'

end component;

for all : ANIm use
entity WORK.ANDm(BEHAVIORAL);

component ORm
generic( propagationdelay : time :- 0 ns );
port(Inl : in logic vector my;

outl : out logic mv := 'U'

end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL);
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component AND2
generic( propagation delay : time :- 0 ns );
port(Inl, In2 in logic my 'U';

outl out logic mv 'U'

end component;

for all : AND2 use
entity WORK.AND2(BEHAVIORAL);

component OR2
generic( propagation delay : time := 0 ns );
port(Inl, In2 : in logic mv := 'U';

outl : out logicmv := 'U'

end component;

for all : OR2 use
entity WORK.OR2(BEHAVIORAL);

component D ff
generic ( propagation-delay time := 0 ns );
port (

D in : in logic mv 'U';
Q_out : out logic mv 'U';

CLK : in logicmy 'U';
Clear : in logic mv := 'U';
SET in logic-my 'U'

end component;

for all :d ff use
entity WORK.D ff(BEHAVIORAL);

signal newsignall : logic_mv 'U';
signal newsignal2 : logic_my 'U';
sig~al newsignal3 : logic_mv -U';
signal newsignal4 : logic_my - U';
signal new_signal5 : logic_my - U';
signal new_signal6 : logic_mv ' U';
signal new_signal7 : logicmv - U';
signal RESET, CLEAR : logic_my = 'U';
signal xlnot, x2not, qlnot, q2not : logic_mv = 'U';
signal and5, and6, and7,

and9, andlO, andll logic_my = 'U';

begin
RESET <- '0';

CLEAR <- '0';

-- combinational logic
gl inverter

port map( xl, xlnot );
g2 inverter

port map( x2, x2not );
g3 inverter

port map( ql, qlnot );
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g4 inverter
port map( q2, q2not )

new signall <= xlnot & x2 & qi;
g5 ANDm

port map( new-signall, and5 )

new-3ignal2 <= xl & x2not & q1;
g6 ANDrn

port map( new_signal2, and6 )

new signal3 <- xl & x2not & q2not;
g7 ANDm

port map( new-signal3, and7 )

new-signal4 <- and5 & and6 & and7
g8 O~xn

port mrap( new-signal4, yl )

g9 AND2
port map( xl, q2, and9 )

g10 AND2
port map( x2, q2, andlO )

new signal5 <= xlnot & x2 & ql;
gll ANDm

port map( new-signal5, andil )

new-signal6 <= and9 & andlO & andi'
g12 :or

port map( new_signaiC. y2 )

new -signa17 <- xlnot & x2not & qlnot & q2;

g13: A~mport map( new-signal7, z )

-- first latch
FF1 :dff

port map( yl, qi, CLCC, SET, CLEAR )

-second latch
FF2 :d-ff

port map( y2, q2, CLOCK, 11L.T, CLEAR )

-initialization

with INITIA-LIZE select
Qinit <- "00' when '1',

"ZZN when others;
qO <= Qinit (0);

end STRUCTURAL;
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This VHDL description is completely simulatable in the VHDL software support

environment. As such, it contains more information than is required or specified by the UC

Berkeley format. This additional information is acceptable, however, because modifications to

pre-verif allow it to extract only that portion of the structural VHDL model required by the

verification software. These modifications are discussed in the next section.

4.2.2 Pre verif Modifications

The modifications made to pre verif allow it to take in a VHDL structural description

utilizing the relationships between VHDL and UC Berkeley's format as defined above. The VHDL

input file required by pre verif must contain both the entity and architectural body as depicted in

the previous example. Preverif s output is directed io the file: verif.input.

All modifications made to the original pre verif source are c-,mmented as such. One

entirely new source file "vhdl_input.c" performs the VHDL translation. The new pre.verif software

may be acquired by contacting AFIT's Electrical and Computer Engineering Department.

Pre verif is invoked from the unix prompt by:

pre_verif [options) [infile] [> outfile]

Two options are required to process VHDL files. First, '-enum" must be included to perform cover

enumeration of the input file; this option is required whether the input file is VHDL or UC Berkeley

format. In order to process VHDL structural files, the option "-vhdl" must also be included. This

was included such that if "-vhdl" is omitted, preverif will expect a UC Berkeley formatted input file

rather than a VHDL file. The [> out file] option redirects any output normally directed to the

console screen into a file. A typica invocation of pre verif is then:

pre verif -enum -vhdl cpu.vhd
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4.2.3 Preverif VHDL Constraints

Because of the proof of concept nature of the pre-verif modifications, several constraints

have been imposed on the designer in utilizing the new VHDL option for pre_arif. Basically,

these constraints reduce the free-form nature of the VHDL text file and are detailed as follows.

Within the entity description, all input and output signals must be the EIA BASICDEFS

type of logic_my. Additionally, only one signal is permitted per text line. The following VHDL

entity description is correct.

entity Upcounter is
-- define inputs and outputs
port ( xl : in logic_mv;

x2 : in logic_my;
z : out logic_my;
CLOCK : in logic mv;
INITIALIZE : in logic mv

end;

The following entities, although they represent correct VHDL, cannot be recognized by b2s. The

first places the ");" symbol, which signifies the end of a port list, on the same line as a port

declaration; the second declares the mode and type of multiple ports rather than one per line.

These errors are boldfaced for clarity.

entity Up_counter is
-- define inputs and outputs
port ( xl in logicmvvector ( 5 downto 0);

x2, x3 : in logic_my;
z out logic_mv;
CLOCK : in logic_my;
INITIALIZE : in logic_mv);

end;

:-..-.,y Vp_counter is
-- define inputs and outputs
port( xl : in logic_mvector( 5 downto 0);

x2,
x3 : in logic_mv;
z out logic_my;
CLOCK : in logic_my

end;
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Further, two signals, CLOCK and INITIALIZE, are reserved entity port names. CLOCK signifies

the clocking signal used within the architecture for state-to-state transition and output

synchronization; INITIALIZE names that signal used to reset or initialize the sequential circuit.

CLOCK may be omitted; when missing an asynchronous sequential circuit is assumed.

INITIALIZE, however, may NOT be omitted; this signal is required to establish the reset or initial

state of the sequential circuit.

In the case of the architectural body, the VHDL modifications made by pre verif ignore

the entirety of the architecture's declarative block Although it must be present to ensure a

correct VHDL design, information contained within that portion of the design are not required by

pre-verif or verif. Additional architectural body constraints are as follows.

Instantiated components must be in the following format:

g5 : ANDm
port map( newsignal, and5 );

The following component instantiation forms are incorrect. The first places the port map on the

same line as the component declaration; the second capitalizes the component's instantiated

identifier. Further, the reserved VHDL "port map* must be lower case characters. The errors have

been boldfaced for clarity.

g5 ANDm port map( new_signal, and5 );

G5 ANDm
PORT AP ( new_signal, and5 );

Additionally, new signals declared within the architecture for use as inputs to the vectored input

components (ANDm, ORm, etc) must be concatenated before use. The following example is

correct:
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newsignal <- ql & inputl & q3not;

g5 : ANDm
port map( newsignal, and5 );

The following, although equivalent in VHDL to the previous example, is an incorrect input

format for pre verif. All new signals which are comprised of concatenations of simple signals,

must be created (by concatenation) before they are used in the components.

g5 : ANDm
port map( new_signal, and5 );

newsignal <= ql & inputl & q3not;

In general, when a problem with VHDL translation occurs using pre-verif, "whrte spaces"

in the VHDL code should solve the problem. These white spaces may be blank spaces

separating words or symbols, or, they may be carriage returns breaking a line up into smaller parts.

One key enhancement to the preverif VHDL translator is the removal of all VHDL formatting

constraints.

4.3 Behavioral Translation

This section details the behavioral to structural translator (hereafter referred to as "b2s")

developed for this thesis. First, b2s's theory of operation is outlined followed by a description of

the subset of the behavioral VHDL model which b2s can translate and, where applicable, the

physical components which these represent.

4.3.1 The b2s Theory of Operation

As described in Chapter 2, one method of sequential circuit design is to capture the state

machine representation as a state transition table and derive combinational logic and flip-flops

from this state transition table. The b2s software operates in a similar manner. From a VHDL
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behavioral model (currently limited to a Mealy machine as expressed in the behavioral model

format of Chapter 3), b2s generates a state transition table (STT) representing the inputs, present

state, next state, and outputs of the sequential circuit. From this table, a netlist of combinational

logic and D flip-flops is created and formatted in the structural VHDL format of Chapter 3. All

necessary architecturally internal signals and AND, OR, INVERTER, and D flip-flop components

are declared within the architecture's declarative block. During the translation process, each and

every minterm within the state transition table is generated; no algorithms are included for

minimization of the combinational logic or optimization of the assigned binary state vectors.

Additionally, certain constraints are placed on the 'free form' VHDL style that b2s can translate;

these constraints are enumerated in Section 4.3.3.

4.3.2 VHDL Behavioral to State Transition Table Mapping

This section describes the mapping of the VHDL behavioral model into the state transition

table used by b2s to generate structural VHDL. The VHDL behavioral model is currently limited to

a simple synchronous Mealy state machine; from the Mealy machine, a state transition table can be

constructed which contains inputs, present state, next state, and output information.

From the entity description, b2s extracts input and output information. As in the

pre-verif s VHDL structural input, CLOCK and INITIALIZE signals are reserved. The behavioral

model's architectural body contains a transition process which provides the skeletal state

transition graph of the machine, state blocks for each state of the machine, and addional optional

blocks (or processes) which provide for initialization and dock synchronization. The state

transition table is constructed from these portions of the architectural body in the following

manner. First, from the VHDL transition process, the present state, next state, and transition

columns of the state transition process are constructed. Each row of the state transition table

represents one transition within the state machine. Therefore, for each transition condition

encountered within the VHDL transition process, one row of the state transition table Is

4.16



generated. The simple transition process of Section 3.3.1.1 is depicted in Figure 4.2 after the

transition process has been processed. Next, input and output signals which are associated with

each row of the state transition table are extracted from the individual state blocks which control

each individual state's actions. Correspondence of the input and output signals to a particular row

of the state transition table is derived by matching the transition signal assignment within the state

block to the appropriate transition label of a row in the state transition table. This matching process

is repeated for each input-transition pair within a state block. Figure 4.3 depicts b2s's addition of

input and output information to a state transition table. This points out one key requirement levied

on the behavioral VHDL description: within the architectural body, the trasition process must

precede the state blocks.

Inputs Present StateiTransition Next State outputs

First State goto second State 1Second State

First State Igoto Third State !Third State ... ___..

First State lothers

Second State goto First state ]First State

Second State _goto Third state lFirst State

Second State others

Third State _oto First State 'First State

Third State -oto Second State Second State

Third State others

Unknown State goto First State First State

Figure 4.2. State Transition Table after examining Transition Process.

Inputs Present StateiTransition Next State JOutputs
0100 First State goto second State Second State 11

0010 First State OTOhird State Third State 10

First State others

0001 Second State goto First state First State 01

1000 Second State goto Third state JFirst State 10

Second State others

1111 Third State goto First State First State 01

1110 Third State goto Second State !Second State 00

1100 Third State others

Unknown State goto First State ;iirst State

Figure 4.3. State Transition Table after Processing All State Blocks.
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The translation performed by b2s from this state transition table into a state machine circuit

comprised of combinational logic and flip-flops is straightforward. Although not presented here,

the concepts of this process are readily available in (3) or (20).

4.3.3 VHDL Behavioral Constructs

The VHDL constructs which comprise the behavioral state machine model have been

described in Chapter 3. This section presents the subset of these constructs currently

recognized by b2s and details constraints imposed on their usage.

The current version of b2s translates a synchronous Mealy sequential circuit specified by

a behavioral VHDL design into a structural version. As outlined in Section 4.2.2, this translation

relies upon the transition process and the state blocks. The b2s software requires these VHDL

constructs in a particular format within the architectural body. Additionally, an intialization block or

process is required. Any clock process to permit synchronous state machine action is required for

VHDL simulation, but is currently ignored by the b2s software.

The transition process must preceed all of the state blocks within the architecture. This

process must take the form depicted in the following template (italicized words are user

dependent; non-italicized words are expected to be in their depicted place as spelled and

formatted):

process ( transition
begin

case Present State is
when Firat State ,>

case transition is
when tranaition2 ->

NextState <- SecondState;
when tranaition3 ->

NextState <- Third State;
when others >

end case;
when SecondState ->

case transition is
when tranaitionl ->

NextState <- FiratState;
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when transition3 ->
NextState <= ThirdState;

when others =>
end case;

when Third State =>
case transition is

when transitioni =>
Next State <= First_State;

when tranxition2 =>
Next State <= Second State;

when others =>

end case;
when others =>

end case;
end process;

State blocks contain the input and output information for the particular state. They must

take the form of the following template; again, italicized words are user defined. The signals

input_1, input_2, and input_3 are the entity's input ports as defined by the designer; the signals

out_1, out_2, and out_3 are the entity's output ports as defined by the designer.

FIRST BLOCK: block ( Present State = FirstState
signal INPUTS : logic mv vector (2 downto 0);

begin
inputs <- inputI & input_2 & input_3;

process (GUARD, inputs)
begin
if ( GUARD ) then

case inputs is
when " 0 0 0 " ->

out_1 <- '1';
transition <- gotoSecondState;

when w111" ->

transition <= gotoThirdState;
out_2 <- '1';
out_3 <- '1';

when others ->
end case;

else
transition <- Null;
out I <- null;
out_2 <- null;
out_3 <- null;

end if;
end process;

end block FIRST_BLOCK;
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4.4 Software Validation

Both the b2s software and the software modifications made to preverif were tested to

ensure their correct operation. Most importantly, two key features were tested. First, the modified

pre-verifs output file, generated from an input VHDL file, was checked in order to determine that

it is equivalent to an output file generated by preverif from a UC Berkeley formatted file

representing the same sequential circuit. Second, the structural VHDL design generated by b2s

was verified equivalent to the behavioral VHDL specification through VHDL simulations. These

tests were conducted on several different sequence detector designs. Each time the b2s and

modified preverif software functioned correctly.
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5 Model and Verification Examples

This chapter presents several examples of not only the behavioral and structural VHDL

models proposed for sequential circuit modeling, but also presents several examples using the

verification software to show the equivalence (or non-equivalence) of several sequential circuits

expressed in VHDL. First, the behavioral model is demonstrated via the Test and Maintenance

(JTM) bus developed as part of the Joint Integrated Avionics Working Group (JIAWG). Next, two

sequential circuits using the structural model are presented including the verification of both. The

first structural circuit is a sequence detector; the second is an eight-instruction CPU controller.

5.1 Behavioral Model

The following example exercises the capabilities of the behavioral model. Its purpose is to

demonstrate various features of the behavioral model; as such, only portions of the examples can

be simulated within the VHDL software support environment.

5.1.1 Test and Maintenance Bus

The test and maintenance bus (tm-bus) is part of a common avionics architecture which is

to be used on the Air Force's Advanced Tactical Fighter (ATF), the Navy's A-12 Fleet Defense

Fighter, and the Army's LHX Attack Helicopter program. The tm-bus provides a maintenance

interface within the common avionics architecture (23).
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5.1.2 Description

The tm-bus is a serial bus which transmits diagnostic control and status information

between the modules interconnected via the tm-bus (23). Figure E.1 within Appendix E details

the state transition graph representing the possible tm-bus states during information flow on the

bus.

The tm-bus state diagram can be represented using the behavioral model's transition

process. By providing the VHDL code as an adjunct to or a replacement of the English text

specification, the tm-bus can be simulated by the contractor in order to ascertain the bus's

operation. Further, portions of the VHDL code can be extracted for use in testing the tm-bus

module's interface to the bus. This code is provided in Appendix E. As described in Chapter 3,

this modeling method is superior to a siandalone English text specification in that the English

document can be open to interpretation; the VHDL cannot.

The behavioral VHDL sequential circuit model can also describe the modules which

interface with the tm-bus. Within the tm-bus specification document, the functional description

requires five pages: four for English text, one for a state diagram. As shown in Appendix E, the

VHDL behavioral modc - in represent the same basic information in two pages.

Additional portions of a tin-bus module were described using the behavioral VHDL model.

This modeling effort, performed for the tm-bus committee of the JIAWG, is described in Appendix

E. Simulation testing was not attempted on these module portions as the details of the

specification document which they represent were still being defined by the JIAWG ti-bus

committee. Regardless, these behavioral code portions demonstrate the capabilities of the

behavioral sequential circuit model in specifying a tm-bus module.

5.1.3 Skeletal Design

The behavioral VHDL model was used to create a skeletal specification of a tm-bus

module. The skeletal specification consists of that information necessary to reconstruct tho state
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transition diagram of Appendix E; this includes the states and transitions within the state transition

diagram. The specification is simulatable; but it does not implement the full functionality of a trn-

bus module as detailed in the tm-bus specification document. A behavioral VHDL model

specification of that detail was not only beyond the scope of this research effort but also

prevented by ongoing revisions of the tm-bus specification document by the JIAWG tm-b,:s

committee. Appendix E contains the skeletal specification of the tm-bus module. Additional

portions of the tm-bus module were implemented using the behavioral VHDL sequential circuit

model in order to demonstrate the model's capabilities; the tm-bus module contains multiple

concurrent processes within each state along with state machines nested within states.

Incorporating multiple concurrent processes and nested state machines were of prime intere-'t to

the tm-bus committee.

The behavioral model readily accommodates concurrent processes within states. Each

state is represented as a VHDL block construct. Within its statement part, the block construct

permits multiple VHDL process constructs (16). As an example, the tm-module's startup timer

state requires three concurrent processes (23). The first process performs built-in module tests

(named Sbit). A second process counts a specified number of dock pulses and then forces entry

into the tm-bus module'o first survivor state if Sbit is complete. Finally, a third process listens for

information flow on the tm-bus. If an RMT command is received over the tm-bus, the third process

interrupts the startup-timer and forces entry into the tm-bus module's slave state. Appendix E

presents a VHDL specification of this state.

Finally, within one of the tm-bus module's state is another state machine. Although

generalized here, a tm-bus specific nestod state machine is presented in Appendix E. A state

machine within another state can be represented by Figure 5.1.
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Figure 5.1. Nested State Machine.

A transition is made into "BigState" when the transition condition INTO is assigned to the

transition signal. When the transition occurs, the nested state machine is initialized to S1 and

processing continues. A transition out of the "BigState" is made when the transition condition

"OUT_OF" is met and assigned to the transition signal. The behavioral VHDL model code to

support this nested state implementation is as follows. The implementation assumes that the

nested state's transition signal has its own resolution function and enumerated names of Retard,

Cycle, and Advance.

Big_State_Block: block (PresentState - BigState)
signal BSPresentState : BS States := UnknownBSState;
signal BSTransition : BS- Transition Resolution

BS Transitions bus
:i no BSTransition;

signal Leave BSState : boolean := false;

begin

process
if GUARD then -- This process initializes the nested machine

-- and determines when to leave the Big_State.
BSPresentState <- SI;
wait until (Leavze BS State = TRUE);
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BS Present State <= UnknownBSState;
Transition <- OUTOF;

else
Transition <- null;

end if;
end process;

process ( BStransition ) begin
case BS Present-State is

when S1 ->

case BSTransition is
when Cycle => BS Present State <- Si;
when Advance => BS Present State <= S2;
when others >

end case;
when S2 ->

case BS Transition is
when Retard => BS Present State <= SI;
when others =>

end case;
when others ->

end case;
end process;

Si State: block ( BSPresentState = Si
begin

process
if GUARD then

Do some action;
BS-Transition <- Advance;

else
BS Transition <- null;

end if;
end process;

end block SlState;

BS S2 State: block ( BSPresentState S S2)
begin

process
if GUARD then
Dosomeaction;

if Condition_1 then
BS Transition <- gotoXfer;

else if Conditon 2 then
BS_Transition <- gotoListen;

else if Condition_3 then
LeaveBSState <- TRUE;

end if;
else

BS Transition <- null;

end if;
end process;

end block BSS2_State;

end block SLAVE-STATE;
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In this code segment, the first process within the architectural block simply initializes the

state machine and then waits until the BigState's exit transition condition is met. Once met, it

makes the assignment to the transition signal to fire the transition process exiting Big_.,State. The

next process is the nested state machine's transition process. Its is identical in function to the

transition process for a simple behavioral sequential circuit; it performs the state to state transitions

within the nested state machine. The next two blocks represent the individual states of the

nested state machine. As such, they perform the nested machine's actions and

as in the second block's case) set the exit flag, Leave.BSState, signifying a transition must be

made out of the BigState.

5.2 Structural Model Examples

Two sequential circuits were implemented using the structural VHDL model of Chapter 3.

The first sequential circuit implemented a sequence detector; the second implemented an eight-

instruction CPU controller. The sequence detector was implemented three different ways; the

CPU controller two. The intent of these examples was to not only demonstrate the abilities of the

structural model, but also, to demonstrate the correct functionality of the verification software

environment for both two equivalent and two non-equivalent sequential circuits. The following

sections detail the results of these two structural modeling efforts.

5.2.1 Sequence Detector

The sequence detectnr structural VHDL examples were created to demonstrate the

capabilities of the structural model and the ability of the verification software environment to show

the equivalence of three separate sequence detector designs.
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5.2.1.1 Description

The sequence detector was implemented as a single input, single output sequential

circuit which detects the binary input string of "1001." The sequential circuit issues a '1' output

whenever the string "1001" is detected. Figure 5.2 depicts the state transition graph for a Mealy

machine implementing this function.

0/0 1/0

Steng 1/0oeece

Detected Detected
Secofi0 0/0 0

Figure 5.2. Sequence Detector.

5.2.1.2 DesIgns

The sequence detector was constructed using the structural VHDL model three different

ways. First, using the state and state vector assignments of

state Vector

Starting State 00

Detected 1 01

Detected 0 11

Detected Second 0 10

Two versions, one using AND-OR and another using NAND devices within the combinational

logic, were constructed. Then, using an altemate state vector assignment of
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at Vector
Starting State 01

Detected 1 00
Detected 0 10
Detected Second 0 11

an alternate AND-OR version was constructed. Appendix F contains the structural VHDL code of

these three versions.

5.2.2 Eight-Instruction CPU Controller

The eight-instruction CPU controller structural example was created to demonstrate the

capabilities of the structural model and the ability of the verification software environment to

disprove the equivalence of two non-equivalent circuit designs.

5.2.2.1 Description

Functionally, the eight instruction CPU controller is the same controller which was

described using the behavioral VHDL model as detailed in Section 3.3.2.1. Unlike the behavioral

implementation, the structural version contains sixteen states. The three additional states were

required by each read or write to external memory.

5.2.2.2 Designs

The controller was Implemented twice using the structural VHDL model - one correct and

one incorrect implementation. The incorrect implementation improperly decodes the JUMPZ

instruction. For proper operation, the JUMPZ Instruction checks the value of the accumulator. If

the accumulator is zero, the JUMPZ instruction is performed; if the accumulator is not zero, the

controller does not perform the JUMPZ instruction but fetches the next instruction for the CPU

controller to decode. The error introduced in the second design forced the controller to always

perform the JUMPZ instruction regardless of the acumulator's value. This error was introduced
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by removing one transition from the controller's state transition graph. The bold arrow in Figure

5.3 points to the transition which was removed from the state transition graph. Appendix F

contains the structural VHDL code for the correct CPU controller. Also, in Appendix F, is that

portion of the improperly implemented controller's code which incorrectly decodes the JUMPZ

instruction. This erroneous code replaces the JUMPZ decoding of the correct controller.

ONAR c- PC

READ
Instruction

PC <- PC + I

LOAD Xo PC <- DR(ADR)

Figure 5.3. Eight Instruction CPU Controller Error Location.

5.3 Equivalence Verification

Equivalence verification was performed between the structural designs of See'icn 5.2.

and between a behavioral and a structural sequence detector. This section details ;hie results of

these verification tests.
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5.3.1 Structure to Structure Verification

The structure to structure verification was performed between the various sequence

detector designs of Section 5.2.1 and between the two eight-instruction CPU controllers of

Section 5.2.2. The results are presented here in that order.

5.3.1.1 Sequence Detectors

The equivalence of the three versions of the sequence detector was demonstrated in

two ways. First, exhaustive simulation of the three sequential circuits was performed using the

VHDL software support environment's simulator. The three sequence detectors were tested

together on the same test bench. Appendix F contains the test bench and simulation report for

one test of the sequence detectors. From these tests, the three sequence detectors were

shown to be equivalent. Then, using the preverif and vorif software, the three sequence

detectors were again shown equivalent. As an additional test, this time intended to prove the

veracity of the pre-verff VHDL translation routines, each sequence detector was duplicated using

the UC Berkeley netlist format. Each VHDL version of the sequence detector was then verified

against its equivalent UC Berkeley version. Each verification test ran successfully. See Appendix

F for the UC Berkeley netlist versions of the sequence detector.

5.3.1.2 CPU Controllers

Uke the sequence detector, the CPU controller was tested using both the VHDL

software support environment's simulator and the verification software. Appendix F contains a

sample simulation run which shows the correct operation of the correct CPU controller and the

improper operation of the incorrect implementation. As in the sequence detector case, both CPU

controllers were simulated on the same VHDL test bench.

The results of this example are quite promising in regards to the superiority of verification

methods over exhaustive simulation. For comparison methods, both the VHDL simulation and
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the verification processes began with the VHDL source code of the CPU controller. In simulation,

both the correct and incorrect VHDL structural controllers were analyzed, model-generated, built,

and simulated concurrently on the same test bench. A report file was generated which contained

clocking, input, and output signal information. In verification, both the correct and incorrect VHDL

structural controllers were translated via preverif and then verified via verif. Appendix F contains

both the unix script files and results for the VHDL and verification runs. As can be seen from the

runs, the VHDL simulation required approximately 30 minutes through report generation --

without any indication that the two controllers were not equivalent. The generated report file had

yet to be scanned to determine equivalence. The verification process, on the other hand,

terminated in approximately nine seconds and accurately reported that the two controllers were

not equivalent. Additionally, once verif reported that the two controllers were not equivalent, it

produced a set of input vectors which, when applied to each controller's state transition graph,

correctly identify the incorrect state and state transition.

5.3.2 Behavior to Structure Verification

The behavior to structure verification was performed on the two-input, two-output,

synchronous, sequential circuit of Figure 5.4. First, a behavioral description was created from the

state transition diagram. Next, a structural description was created from Kamough maps of the

circuit. Then, using the verification software, the two circuits were verified equivalent. Included in

Appendix D is this verification example as an exercise. The VHDL behavioral and structural

descriptions including the structural description created by the b2s software are included with

Appendix D's example for completeness.
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X2 X1 / out_2 out_1

01//00

10/00! 11/00

A B

00/00 Mp10/00
10/00 11/01 s

L 01/00

. 01/00 f

D C
~~10/00 ,,._ 00/00

00/00 I11/00

Figure 5.4. Two-input, Two-output, Synchronous Sequential Circuit.

The verification software verified tf~at the two circuits were indeed equivalent. The

software terminated with the results:

# Machine 1 inputs 2 outputs 2 latches 2
# Machine 2 inputs 2 outputs 2 latches 2
#Time to read in covers : 1.300000e-01 secs

#MACHINES ARE THE SAME
Number of states - 4
Number of edges - 15
Number of entries - 7
Number of save difs - 0
#Time for verification : 7.0000OOe-02 secs
#Total user time : 2.0000OOe-01 secs
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6 Conclusions, Recommendations, and Summary

6.1 Conclusions

This section presents conclusions reached by the researcher concerning the sequential

circuit models (behavioral and structural) and the integrated VHDL/verification process. First, the

conclusions of several model examples are presented followed by the results of the verification

process.

6.1.1 Models

As presented in Chapters 3 and 5, multiple sequential circuit examples were created

using the behavioral and structural models. This section presents the results of both. The

behavioral model is presented first followed by the structural.

6.1.1.1 The Behavioral Model

Muitiple sequential circuit examples were developed to prove the abilities of the

behavioral VHDL model. Examples presented in this thesis included a synchronous Mealy, an

asynchronous Moore (both in Appendices B and F), a hybrid sequential circuit incorporating

multiple processes per state (Appendix B), and a hierarchical circuit containing nested state

machines within states (Appendix E). In each case, the resulting circuit description exhibited

specification advantages over previous efforts. Each simulated the correct behavior of the

desired circuit and were more easily readable than designs expressed in the earlier specification

styles presented in Chapter 2. In fact, the behavioral model was so well received, that it is

currently being used by the DoD Joint Integrated Avionics Working Group's (JIAWG) test and

maintenance bus (tm-bus) subcommittee to develop a VHDL specification of the tm-bus for the

Air Force's and the Navy's ATF, and Army's LHX. When completed, this VHDL trn-bus
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specification, which fully specifies and simulates the desired operation of the deliverable product,

can replace the English-text portion of the contractual document to be delivered to the

contractors.

6.1.1.2 The Structural Model

As presented in Chapters 3 and 5, the structural model was tested several ways. Three

versions of a sequence detector and two versions of an eight-instruction CPU controller were

developed (Appendices C and E). They were used not only to test the modeling ability of the

structural model but also to exercise the verification software. From these, it was determined that

the model is not unlike structural descriptions expressed in other design languages which contain

a netlist of components and can be simulated in order to test the circuits operation. From these

examples, the structural model is shown adequate for designing sequential circuits using a limited

set of standard components; but is hindered in expressiveness by this restricted set of

components. As detailed in Chapter 3, these components were intentionally selected in order for

the structural model to facilitate the proof of concept merger of the VHDL models to the UC

Berkeley verification software.

6.1.2 Verification

The conclusions presented here are based on two structural-to-structural verifications

and one behavioral-to-structural verification as discussed in Chapter 5. All three versions of a

sequence detector were verified equivalent to each other via VHDL simulation and the verification

software. Additionally, the verification software accurately identified the two eight-instruction CPU

controllers as non-equivalent For this latter case, the verification software also provided a set of

input vectors which distinguished the different performance of the two controllers. Finally, the

verification software accurately verified two sequence detectors; one described via the behavioral

model and another via the structural model.
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In both the structure-to-structure cases, the verification process accurately predicted the

circuit's equivalence (or non-equivalence) in considerably less time than a VHDL simulation of tio

same components. As a case in point, the eight-instruction CPU controller required 29 minutes to

perform VHDL analysis, model generation, and simulation; the verification software required less

than 2 minutes. It's important to note hat the 29 minutes required for VHDL simulation only

produced a simulation report -- it did not include the time required to compare the simulation

results in order to determine if the two controllers were equivalent or not. In less than 2 minutes,

the verification process not only identified the two controllers as non-equivalent but also provided

a set of input vectors, which, when applied to the CPU controllers during VHDL simulation,

correctly delineated the different functionality of the two controllers.

For the behavior-to-structure case, the verification software was faster than the VHDL

simulation again. More importantly, however, it demonstrates that behavioral circuit specifications

can be merged into the verification process. This test aptly provided the proof of concept in the

VHDL and verification methodology merger. Although this process currently accepts behavioral

models which describe only synchronous Mealy sequential circuits -- its success demonstrates

that structural design validation from a behavioral specification is possible. it warrants further

research to exploit all the capabilities of VHDL and the verification software.

6.2 Recommendations

This section presents several recommendations for enhancements to or future research

in the sequential circuit specification, design, and verification environment developed by this

thesis. These recommendations fall into three categories: extending the VHDL language

constructs permitted within both the behavioral and structural models, expanding the capabilities

of the verification software, and, most importantly, incorporating timing parameters into both the

behavioral and structural sequential circuit models and into the verification process. Each of these

topics are discussed in the following sections.
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6.2.1 VHDL Model Enhancements.

Enhancements should be made to both the behavioral and structural models proposed in

this thesis in order to increase the models' fluency in circuit specification and design. As

presented in Cnapter 3, the models developed in this research currently use a limited set of the

VHDL language constructs -- more research is necessary to incorporate additional language

constructs in order to permit a more fluent specification and design capability yet maintain the

models' clarity. Proposed enhancements and the research necessary to make these

enhancements are presented first for the behavioral model and then for the structural.

6.2.1.1 Behavioral Model Enhancements.

For the behavioral model, research should focus on incorporating more VHDL constructs

and timing information. Although it is quite easy to blatantly add more constructs to those

permitted within the behavioral model, the research should determine which constructs not only

correctly specify the behavior of the sequential circuit but also, in their usage, do not imply one

particular hardware implementation. As an ,xample, the following behaviorally-correct VHDL code

portion, which counts two negative falling clock edges before taking some action, may imply that

the designer use an up counter circuit when the actual circuit is implemented.

process ( Clock )
variable clock-count : integer :- 0;

begin
if negedge( clock ) then

clock count :- clock count + 1;
if clock-count - 2 then

-- some action is performed such as:
outputs <- "0001";

end if;
end if;

end process;
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In place of this process, a simple VHDL wait statement, which does not imply counting up or down,

may be superior in that it does not dictate a counter's particular implementation. A simp:e counter

could then be:

wait for 2 * Clockperiod;

Further research is required to specify starting, stopping, and programming counters specified as

wait statements.

Timing information could be entered in several locations within the behavioral model --

future work should investigate if timing information should be entered at will or entered in specific

locations within the behavioral model. As an example, the delay time which can be associated with

state-to-state transitions can be specified in two places within the behavioral model. One location

is inside the state block where the transition signal is assigned one of the enumerated values

indicating a transition is to take place. Within the state block, a state-to-state transition delay time

of 10 nanoseconds could be expressed as:

Transition <- gotoFirstState after I0ns;

Alternatively, within a second location (the transition process where the next state is evaluated

based upon the value of the Transition signal), the design could specify:

NextState <= FirstState after i0ns;

While either method results in the correct specification and simulation of a 10 nanosecond

transition delay, research is warranted to determine if one method more clearly or succinctly

specifies the sequential circuit. Further work here, and in other VHDL constructs, is required.

The issue of incorporating this timing information into the verification process is discussed in

Section 6.3.3.

Moving up a level of abstraction within the behavioral VHDL specification, the block

construct has been shown appropriate for modeling indi-idual states. Future research should

investigate replacing the state block or processes within the state block with a VHDL concurrent
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procedure call. For example, the fellowing state, which currently is contained in its entirety in the

behavioral model:

First State : block ( PresentState - State_1
begin

process ( GUARD , Xl, X2
if GUARD then

-- Location of State activities if state is active.
else

-- etc...

end if;
end process;

end block First State;

would be replaced by:

First-State: FirstState Procedure(PresentState, XI, X2, Out 1);

where Presentstate, X2, X2, and Out_1 would be signals passed in and out of the

procedure. The concurrent procedure call would be quite appropriate in large designs in that the

procedures' contents would be located in separate VHDL packages which the architectural body

references via the VHDL use construct. Additional research should not only investigate including

concurrent procedure calls into the behavioral model but also, once incorporated, the research

should extend the verification method to include the procedure calls. This would necessitate that

the b2s software contain additional routines which search the designers libraries and extract the

appropriate concurrent procedure body information in order to generate the state transition table.

Finally, from a global system design perspective, the behavioral VHDL model is intended

solely for specifying sequential drcuits. There is no reason why a more omniscient behavioral

model, such as that depicted in Figure 6.1, could not be developed in which the sequential

VHDL model would be a component. Although this would preclude the use of the verification
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methods developed by this research, future research should be directed towards developing this

overall system model and applying verification methods to it.

- Component-l

Behavioral
Component_2 Sequential

Circuit

" Comptunent._3

Figure 6.1. Behavioral VHDL Sequential Circuit within a System.

6.2.1.2 Structural Model Enhancements.

The structural model proposed by this thesis uses a small portion of the available

language constructs in the VHDL; namely component instantiation, scalar and vector signals

within the architectural body, and two initialization methods. Unlike the proposed behavioral

enhancements which seek to increase the language constructs available to a designer, future

enhancements to the structural model should focus on

(1) adding the "generate language construct for instantiating arrays of regular

components within the sequential circuit (ideal for multiple flip-flop instantiation),

(2) incorporating a larger component selection within the design (such as PALs, PLAs,

ROMS, custom components, etc),

(3) refining methods for initializing the sequential circuit, and,

(4) including inter- and intra-component delay timing information.
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Each of these additions would increase the structural model's fluency and capability in describing

the sequential circuit as an interconnection of electronic components. Additionally, any

enhancements to the structural model would require modifications to the pre_verif VHDL

translator code in order to allow pre-yerif to accept the enhanced structural VHDL design.

Finally, as in the behavioral model's case, there is no reason why a more omniscient

structural model, similar in concept to the behavioral one depicted in Figure 6.1, could not be

developed in which the structural sequential VHDL model would be a component. In Figure 6.1,

the structural sequential VHDL model would replace the behavioral model. Although this would

preclude the use of the verification methods developed by this research, future research should

be directed towards developing this overall system model and applying verification methods to it.

6.2.2 Verification Software Enhancements

Enhancements should be made to both the preverif and b2s software tools.

Enhancements to pre_verif should center on its ability to translate the structural VHDL model;

enhancements to b2s should involve both its behavioral VHDL model translation capability and its

output file formats. These modifications to pre verif and b2s are discussed in the following

sections. An additional enhancement common to both tools would be adding an ability to

translate timing information which has been incorporated into the VHDL models; this modification

is discussed in Section 6.3.3.

6.2.2.1 Enhancements to pre_verif

Enhancements to the preverif software should center on removing the current

constraints on the format of the VHDL constructs which pre verif recognizes. These constraints,

as presented in Chapter 4, range from the simple lower-case character recognition of symbols

such as "port map" or "entity' to enforced two line construct formatting of
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g4 : ANDm
port map ( inputsignals, output-signal );

rather than

g4 : ANDm port map ( input_signals, outputsignal );

Additionally, pre verif should be extended in order to translate any enhancements incorporated

into the structural VHDL model as proposed in Section 6.3.1.2. These modifications to preverif

would greatly enhance the tools ease of use.

6.2.2.2 Extensions to b2s.

The b2s extensions proposed for future research involve three different areas. First, b2s

should be extended to translate the additional VHDL constructs incorporated into the behavioral

VHDL model as suggested in Section 6.3.1. Next, the structural VHDL synthesized by b2s

should be optimized; this enhancement is discussed in Section 6.3.2.2.1. Finally, alternate b2s

netlist cutput formats should be investigated; two are proposed in Section 6.3.2.2.2. This work to

enhance b2s would greatly aid AFl's VLSI design capabilities in allowing direct circuit synthesis

from a behavioral VHDL description.

6.3.2.2.1 Structural VHDL Optimization.

In its current version, the b2s software produces combinational logic for the structural

VHDL model which is not optimized from the behavioral circuit's VHDL specification. Each

minterm within the sum of products equations, which are realized by the combinational logic, is

explicitly enumerated. Further, b2s forms these minterms, whether or not they are required (ie, a

don't care situation), from every signal within the state's input and present state vector(s). Finally,

during the generation of the state transition table from the behavioral VHDL description, no state

vector assignment optimization is performed. Future enhancements to b2s should incorporate

some method to optimize the combinational logic.
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The optimization could be accomplished in several ways. First, the minterms could be

minimized. Minimization would reduce the number of variables required within minterms and, in

turn, reduce the complexity of the combinational logic. Additionally, minterms which are common

between any of the output(s) and/or next state(s) signals should be instantiated as one AND gate

rather than the current method of instantiating an AND gate for each usage of the same minterm

within the multiple sum of product equations. Finally, a method for optimizing state vector

assignments should be investigated in order to minimize the combinational logic through

judicious state vector assignment.

6.3.2.2.2 Alternate b2s Output Formats.

Alternative b2s output formats should be investigated in order to explore structural

design synthesis from the behavioral VHDL specification. One alternative b2s output could be a

SPICE-based structural netlist. As mentioned above, another output format could be a MAGIC, or

CIF based, macro-cell chip layout synthesized directly from the behavioral VHDL model. Each

alternative output format would provide a logical "next step" in the design process originating from

the behavioral VHDL model.

The SPICE-based netlist would provide the capability of performing an in depth analog-

based timing, fanout, and power consumption analysis of the sequential circuit. This analysis is

currently not available in VHDL Results from the SPICE simulations could then be back

annotated into the behavioral or structural VHDL sequential circuit descriptions in order to

produce a quite complete VHDL specification or design of the desired sequential circuit.

The MAGIC or CIF based macro-cell netlist would provide the capability of synthesizing

the sequential circuit on a MOSIS chip directly from the VHDL behavioral description. Automating

this synthesis step would eliminate any MAGIC design errors which are inadvertently Introduced

during the manual layout step currently performed at AFIT. Additionally, automating this process
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would eliminate the time consuming manual layout step and permit more time for the design and

testing of the sequential circuit's behavior.

The generation of either alternate output format is not a simple matter. In the case of the

SPICE-based output, research would be necessary in order to property characterize the SPICE

structures of the current VHDL structural components (AND, OR, NOR, NAND, flip-flops, etc).

Although the structural components could be represented in SPICE as subcircuits, base line

performances and sizes including a mechanism for dealing with 2, 3, 4, or more input signals

should be developed. Further, some methodology must be derived in order to back annotate

information gleaned from the analog simulations into the behavioral (or structural) VHDL

descriptions. Key to the back annotation would be deriving a method to incorporate inter-

component delays introduced by resistive and capacitive affects of wire routing on the VLSI

layout.

For the MAGIC or CIF based representations, automated cell placement and routing may

be an intractable issue. Research is required in these areas. Additionally, this representation

shares with the SPICE format the need to represent the structural components as macro-cells.

AJso, as with the SPICE version, AFIT lacks a macro-cell library of MAGIC components; each chip

layout is a fully custom, hand-crafted design.

6.2.3 Incorporating Timing Into the Verification Process.

Currently, the verification process used in this thesis does not incorporate any notion of

timing delays brought about by signal propagation delays internal to or propagation delays

between devices within the sequential circuit. VHDL possesses language constructs for

introducing timing delays into both the behavioral or structural VHDL models; their inclusion in the

behavioral and structural models is discussed in Section 6.3.1.1 and Section 6.3.1.2. Using

these constructs, both the behavioral and structural VHDL sequential circuit models can

accurately portray the timing characteristics of an actual circuit. Given their inclusion within the
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VHDL models, this section presents one possible method for verifying not only the functional but

also the timing equivalence of two sequential circuits which incorporate the timing delay

constructs of VHDL.

First, a concise definition of "timing equivalence" should be derived. Two circuits may be

logically equivalent producing the same output(s) for any given input(s) and present state

condition, but the output(s) may be valid at vastly different times. The first circuit may produce a

valid output after 10 nanoseconds while the second may produce the same output after 2 days.

Functionally, these two outputs are equivalent; but the two circuits are hardly interchangeably

equivalent. When the sequential circuit is synchronous, the "timing equivalence" definition may

involve the output delay times when measured from the appropriate edge (or level) of the

synchronizing clock. The asynchronous circuit may involve a combination of the timing delays for

the output(s) and any time delays required to transition from state to state. Finally, the "timing

equivalence" definition may affect the manner in which a check for timing equivalence is

incorporated and/or performed in the verification software.

One possible approach is presented as follows. Figure 6.2 shows a representative state

transition table for a Mealy machine which incorporates propagation delay time. In the figure, T1

represents the transition delay time required to transition from the present state into the next state

as measured from the time when the inputs and present state are valid. T2 represents delay time

required before the output is valid as measured from the time when the inputs and present state

necessary to determine the output are present. This state transition table can be readily

constructed from either the behavioral or structural VHDL models of a sequential circuit
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State Transition Table:
Lnout Pesen2t State NetSae T1 OtIS T

0 - 000 1 - 1 Ins 110 3ns
1 - 1-1 01- 2ns 100 2ns

0- 01- 100 ins 000 4ns
- - 100 100 4ns 110 5ns

_ -100 100 5ns 000 2ns
1- 110 100 ins E 100 ins
00 100 100 3ns 001 2ns
- 1 100 111 Ins 111 2ns
00 1 -1 01- ins 100 2ns
1 - 000 100 ins 001 2ns

Figure 6.2. Sample State Transition Table Incorporating Timing Information.

The manner in which the timing information represented by TI and T2 is incorporated into

the two VHDL models should receive close attention. For the behavioral model, these delay

times may be introduced in several portions of the design, as represented in Figure 6.3. Whether

the model portrays a synchronous or asynchronous circuit may further determine the appropriate

method of inserting this timing information into the behavioral model. Additionally, for the

structural model, a mechanism for determining the lumped sum propagation delay time and wiring

delay time between components, as depicted in Figure 6.4, must be derived. The VHDL

structural model does not include the architectural bodies of the components which are

instantiated within the structural model. This would necessitate that the preverif software contain

additional routines which search the designers component libraries and extract the appropriate

component timing information.
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Figure 6.3. Delay Time Insertion into the Behavioral Model.
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Figure 6.4. Lumped Sum Propagation Delay.

For the purposes of this example, *timing equivalence" will be defined such that each

signal (both output and next state) must be identical between the two circuits under

consideration. In reality, this may be too stringent a requirement; plus and minus time tolerance

ranges about some desired valid output time may be more appropriate. Figure 6.5 depicts this

tolerance range as a greyed region about two signals of interest.
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Figure 6.5. Equivalent Output Signals within a Tolerance Region.

One possible solution for the verification software may proceed as follows. As the

verification software steps through each state pair of the two sequential circuits searching for a

differentiating sequence to determine their equivalence or non-equivalence (as detailed in

Chapter 2), the delay times for the particular output or state transition of the two machines can be

compared. If these times are equivalent or within some acceptable time tolerance, the machines

are considered identical and verification can proceed for the next state pair. If these times are

different, the machines are different and verification may terminate.

6.3 Summary

This thesis has presented a solution to the problem of specifying, designing, and

verifying sequential circuits. The solution is a merger of the specification and design capabilities

of the VHDL with a known verification method in order to solve the design and verification problem

of sequential circuits. Both goals of the research were met. The first goal was to determine

appropriate VHDL language constructs for behavioral and structural modeling of a sequential

circuit. This goal produced two VHDL-based models: one for behavioral specification and a

another for structural design. The second goal was to apply the verification techniques of UC

Berkeley's verif software to sequential circuits portrayed via the behavioral and structural VHDL
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models. The product is a set of software tools, b2s, pre-verif, and verif, which compare two

sequential circuits described via the VHDL models. These models and software tools have been

tested and have been shown to be quite appropriate for solving the specification, design, and

verification problem of sequential circuits. Finally, recommendations have been offered for

improving both the VHDL models and the verification software.
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APPENDIX A. EIA COMMERCIAL COMPONENT MODEL

SPECIFICATION SP-2229

This appendix contains the seven level logic definitions and ancillary support functions as proposed

for standardization by the Electronic Industry Association. For further information regarding this

proposed standard and its use, consult the EIA specification document, SP-2229.

VHDL Source Code E=

basicdefs package A.2

basicdefs package body A.5

A. 1



package BASICDEFS is

The following is a preliminary definition of the basic logic system
-- and associated operators/functionis used for the EIA VHDL Model
-- Commercial Component Specification.

-- Created by Dave Cantwell/Hughes 1714)-670-4677
-- & Len Finegold/General Dynamics

-- COPYRIGHT C Hughes Aircraft Co. 1989
-- Created 1/25/90

-- Version 0.1

Type logic mv is ('U', 'X', '0', '1', 'Z', 'L', 'H');
Type logicvector_my is array (natural range <>) of logic_my;
Type logicmvtable is array (logic my, logic_my) of logic_my;

-- Logic conversion functions

SCALAR FUNCTIONS

OVER.LOADED OPERATORS
FUNCTION "and" ( il, i2 logic_my ) RETURN logic_my ;
FUNCTION "nand" ( il, i2 logic_my ) RETURN logic_my ;
FUNCTION "or" ( il, i2 logic_my ) RETURN logic_my ;
FUNCTION "nor" ( il, i2 logic_my ) RETURN logic_mv ;
FUNCTION "xor" ( il, i2 logic_my ) RETURN logic_my ;
FUNCTION "not" ( il logic_my ) RETURN logic_my ;
-- NOT A PREDEFINED OPERATOR, THUS IS NOT OVERLOADED.
FUNCTION xnor ( il, i2 : logic_my ) RETURN logic_mv ;

VECTORIZED FUNCTIONS

FUNCTION "and" ( ii, i2 : logic_vector_my ) RETURN logic vector_my ;
FUNCTION "nand" ( il, i2 : logicvector_my ) RETURN logicvector mv ;
FUNCTION "or" ( il, i2 : logicvector_my ) RETURN logicvector my ;
FUNCTION "nor" ( il, i2 : logicvector_my ) RETURN logicvector_mv ;
FUNCTION "xor" ( il, i2 : logicvector_my ) RETURN logicvector_my ;

FUNCTION "not" ( il : logicvector_mv ) RETUMN logic vector my ;
-- NOT A PREDEFINED OPERATOR, THUS IS NOT OVERLOADED.
FUNCTION xnor ( il, i2 : logicvector_my ) RETURN logicvector mv ;

-- BIT-WISE REDUCTION FUNCTIONS

FUNCTION andbw ( il : logicvector_my ) RETURN logic_my;
FUNCTION nandbw ( il : logic vector_mv ) RETURN logic_my;

FUNCTION or_bw ( il : logicvector_my ) RETURN logic_my;
FUNCTION norbw ( il : logic_vector_mv ) RETURN logic_my;
FUNCTION xorbw ( il : logicvector_my ) RETURN logic_my;
FUNCTION xnorbw ( il : logic_vector_mv ) RETURN logic_my;

-- COMPARISON OPERATORS

FUNCTION "-" (il, i2 logic my) RETURN logic mv;
FUNCTION "/-" (il, i2 logic mv) RETURN logic my;
FUNCTION "-" (il, i2 logicvector_my) RETURN logic my;
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FUNCTION "/-" (il, i2 : logic vector my) RETURN logic my;
---- ------------------------------- ------------------------------------

BUS RESOLUTION FUNCTIONS
---- -------------------------------------------------------------------
The following function shall be used for standard components
FUNCTION WiredOutputs (signals : logicvector my) RETURN logic_my;
-- The following functions shall be used for on chip development ONLY
FUNCTION Wired_Or (Signals : logicvector my) RETURN logic mv;
FUNCTION WiredAnd (signals : logic vector_my) RETURN logic_my;

Miscellaneous Function(s)

Function to translate H, L, or Z on inputs to 1, 0 or X respectively.
-- Example usage: in a RAM model, without this function, a HIGH or LOW
-- state would be stored internally from the bus and subsequently be
-- erroneaously driven onto the bus during a read operation.
FUNCTION Filter (input : logic_my) RETURN logic_my;

Signal transitions and relationships

FUNCTION Posedge ( signal sl : logic_my ) RETURN boolean;
FUNCTION negedge ( signal sl : logic_my ) RETURN boolean;

-- Posedge and NEgedge functions return TRUE on 0->l or 1->O
-- transitions only

PROCEDURE Setup_check ( constant input_le : time;
constant timespec : time;
constant message : string;

constant err-level : severitylevel);

PROCEDURE Holdcheck ( constant input_le : time;
constant timespec : time;
constant message : string;
constant errlevel : severity_level);

-- The following illustrates how to imbed setup and hold checks
-- procedures

-- into the VHDL models

-- DATACLOCKSETUP: process

-- begin

-- wait on clk until do timing_checks and posedge(clk,clk'lastvalue);
-- Setupcheck (data'lastevent, modeltimes.ts data, "DATA to CLOCK",
-- warning);

-- end process DATACLOCK_SETUP;

-- DATA CLOCKHOLD: process

-- begin
-- wait on clk until do timing_checks andposedge(clk,clk'lastvalue);
-- Holdcheck (data'lastevent, modeltimes.thdata, "DATA to CLOCK",
-- warning);

-- end process DATACLOCKHOLD;

-- function name: F delay
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-- parameters:
-- in newly -- bit mv -- new logic value
-- in delay01 -- time -- 0->l delay value
-- in delaylO -- time -- 1->0 delay value

-- returns: The appropriate delay to be used, given the new value
-- and the 0-1 and 1-0 delays.

-- purpose:Compute the appropriate delay to be used for the transition
-- on an output port.

FUNCTION F delay( newly : IN logicmv;
delay01 : IN time;
delaylO : in time ) RETURN time;

end BASICDEFS;
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package body BASICDEFS is

The following is a preliminary defintion of the basic logic system
-- and associated operators/functions used for the EIA VHDL Model

-- Corniercial Component Specification.

-- Created by Dave Cantwell/Huges (714-670-4677)
-- & Len Finegold/General Dynamics

-- COPYRIGHT C Hughes Aircraft Co. 1989
-- Created 1/25/90

-- Version 0.1

CONSTANT DECLARATIONS FOR USE IN SIGNAL & VARIABLE ASSIGNMENTS.

constant MAX SIZE POSITIVE := 32; -- This is a deferred

-- constant which

-- should be initialized --

to the largest size
-- bus in design

constant UNINITIALIZED logic mv :f U';
constant UNKNOWN logic-mv : X' ;
constant ZERO logic_my : '0';
constant ONE logic-mv :i '';
constant HIGHZ logic mv := 'Z';
constant LOW logic_mv :I L';
constant HIGH logic_my 'H';
constant ALLUNINITIALIZED " logic_vector_mv (MAXSIZE - 1 DOWNTO 0)

:- (others => UNINITIALIZED);
constant ALLUNKNOWN : logicvector-mv ( MAXSIZE - 1 DOWNTO 0)

:= (others => UNKNOWN);
constant ALL-ZERO : logicvector_mv ( MAX-SIZE - 1 downto 0)

:= (others => ZERO);
constant ALLONE : logic vector_mv ( MAXSIZE - 1 downto 0)

:- (others -> ONE);

constant ALLHIGHZ : logic vector_my ( MAXSIZE - 1 downto 0)
:= (others -> HIGHZ);

constant ALLLOW : logic vector mv ( MAXSIZE - 1 downto 0)
:= (others => LOW);

constant ALLHIGH : logic vector_my ( MAXSIZE - 1 downto 0)
:- (others -> HIGH);

TYPE DECLARATIONS FOR USE IN SUBPROGRAMS BODIES

type logic mv array is array (logic my) of logic_my;

SCALAR FUNCTIONS

FUNCTION "and" (il, i2 : logic my ) RETURN logic my is

constant TABLE : logic mv table :-
(( UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO, UNKNOWN),

UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO, UNKNOWN),
ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO),
UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
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( UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO, UNKNOWN),
( ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO),
( UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE));
begin

RETURN Table( il, i2);

end land";

FUNCTION "nand" ( il, i2 : logic_my ) RETURN logic_mv is

constant TABLE : logic my table :=
(( UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE, UNKNOWN),

(UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE, UNKNOWN),

(ONE, ONE, ONE, ONE, ONE, ONE, ONE),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE, UNKNOWN),

(ONE, ONE, ONE, ONE, ONE, ONE, ONE),

(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO));
begin

RETURN Table( il, i2);

end "nand";

FUNCTION "or" ( il, i2 : logic_mv ) RETURN logic_mv is

constant TABLE : logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE),

(UNKNOWN, UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
(ONE, ONE, ONE, ONE, ONE, ONE, ONE),
(UNKNOWN, UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
(ONE, ONE, ONE, ONE, ONE, ONE, ONE));

begin

RETURN Table( il, i2);

end "or";

FUNCTION "nor" ( il, i2 : logic_my ) RETURN logic_my is

constant TABLE : logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO),

(UNKNOWN, UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO),
(UNKNOWN, UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO),

(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO));

begin

RETURN Table( il, i2);

end "nor";
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FUNCTION wxorw ( il, i2 : logic_mv ) RETURN logic_mv is

constant TABLE : logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO));
begin

RETURN Table( il, i2);

end "xor" ;

FUNCTION xnor ( il, i2 : logic_mv ) RETURN logic_mv is

constant TABLE : logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE));

begin

RETURN Table( il, i2);

end xnor;

FUNCTION "not" ( il : logic_mv ) RETURN logic_mv is

constant TABLE : logic-mvarray :-
UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO);

begin

RETURN Table( il);

end "not";

FUNCTION land" ( il, i2 : logicvector_my ) RETURN logic vector-my is
alias Argl logicvector_my ( 1 to il'length ) is il;
alias Arg2 logic_vector_my ( 1 to i2'length ) is i2;
variable Store : logicVector_my ( 1 to il'length );

begin
assert il'length - i2'length report "Bus width Mismatch! "

severity warning;
for i in Store'range LOOP

Store(i) :- Argl(i) and Arg2(i);
end LOOP;
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return STORE;
end "and";

FUNCTION "nand" ( il, i2 : logicvector_mv ) RETURN logic vector-my is
alias Argl logicvector my ( 1 to il'length ) is il;
alias Arg2 logic_vector_my ( 1 to i2'length ) is i2;
variable Store : logicVector_my ( 1 to il'length );

begin
assert il'length - i2'length report "Bus width Mismatch! "

severity warning;
for i in Store'range LOOP

Store(i) :- Argl(i) nand Arg2(i);
end LOOP;
return STORE;

end "nand";

FUNCTION "or" C il, i2 : logic vector_my ) RETURN logicvector-mv is
alias Argl logicvector_my ( 1 to il'length ) is ii;
alias Arg2 logic_vector_my ( 1 to i2'length ) is i2;
variable Store : logicVector_my ( 1 to il'length );

begin
assert il'length - i2'length report "Bus width Mismatch!

severity warning;
for i in Store'range LOOP

Store(i) : Argl(i) or Arg2 (i);
end LOOP;
return STORE;

end "or";

FUNCTION "nor" ( il, i2 : logic-vector_mv ) RETURN logicvector_my is
alias Argl logicvector_my ( 1 to il'length ) is il;
alias Arg2 logic_vector_my ( 1 to i2'length ) is i2;
variable Store : logicVector_my ( 1 to il'length );

begin
assert il'length - i2'length report "Bus width Mismatch! "

severity warning;
for i in Store'range LOOP

Store(i) :- Argl(i) nor Arg2(i);
end LOOP;
return STORE;

end 'nor';

FUNCTION "xor" ( il, i2 : logicvector_my ) RETURN logicvector_mv is
alias Argl logicvector_my ( 1 to il'length ) is il;
alias Arg2 logicvector mv ( 1 to i2'length ) is i2;
variable Store : logicVector_mv ( 1 to il'length );

begin
assert il'length - i2'length report "Bus width Mismatch! "

severity warning;

A.8



for i in Store'range LOOP
Store(i) :- Argl(i) xor Arg2(i);

end LOOP;
return STORE;

end "xor";

FUNCTION xnor ( il, i2 : logic vector_mv ) RETURN logicvector my is
alias Argl logicvector_my ( 1 to ilwlength ) is il;

alias Arg2 logic_vector_my ( 1 to i2'length ) is i2;
variable Store : logicVector_my ( 1 to il'length );

begin
assert il'length - i2'length report "Bus width Mismatch!

severity warning;
for i in Store'range LOOP

Store(i) :- xnor ( Argl(i), Arg2(i) );
end LOOP;
return STORE;

end xnor;

FUNCTION "not" ( il : logicvector_my ) RETURN logicvector my is
variable Store : logicVector_my ( 1 to il'length );

begin
for i in Store'range LOOP

Store(i) :- not il(i);
end LOOP;
return STORE;

end "not";

-- BIT-WISE REDUCTION OPERATORS

FUNCTION andbw ( il : logicvector mv ) RETURN logic-mv is
variable Store : logic my :- il(il'low);

begin
for i in il'low + 1 to il'high LOOP

CASE Store is
when ZERO I LOW -> RETURN ZERO ;
when ONE I HIGH > Case il(i) is

when ZERO I LOW -> RETURN ZERO

when ONE I HIGH => NULL;
when others -> Store :- UNKNOWN;

end CASE;
when others -> Case il(i) is

when ZERO I LOW -> RETURN ZERO ;

when others -> Store :- UNKNOWN;

end CASE;

end CASE;
end LOOP;
RETURN Filter (Store);

end and bw;
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FUNCTION nand bw ( il : logicvector mv ) RETURN logic_mv is
variable Store logic my :- il(il'low);

begin
for i in il'low + 1 to il'high LOOP

CASE Store is
when ZERO I LOW => RETURN ONE;
when ONE I HIGH => Case il(i) is

when ZERO I LOW -> RETURN ONE;
when ONE I HIGH -> NULL;
when others -> Store :- UNKNOWN;

end CASE;
when others => Case il(i) is

when ZERO I LOW => RETURN ONE;
when others -> Store :- UNKNOWN;

end CASE;
end CASE;

end LOOP;
RETURN not Store;

end nand bw;

FUNCTION orbw ( il : logicvector_mv ) RETURN logic_mv is
variable Store : logic my :- il(il'low);

begin
for i in il'low + 1 to il'high LOOP

CASE Store is
when ONE I HIGH -> RETURN ONE;
when ZERO I LOW -> Case il(i) is

when ZERO I LOW => NULL;

when ONE I HIGH -> RETURN ONE;
when others => Store :- UNKNOWN;

end CASE;
when others => Case il(i) is

when ONE I HIGH -> RETURN ONE;
when others -> Store :- UNKNOWN;

end CASE;

end CASE;
end LOOP;
RETURN Filter(Store);

end orbw;

FUNCTION nor bw ( il : logicvector mv ) RETURN logic_mv is
variable Store : logic my :- il(il'low);

begin
for i in il'low + 1 to il'high LOOP

CASE Store is
when ONE I HIGH -> RETJRN ZERO;
when ZERO I LOW -> Case il(i) is

when ZERO I LOW -> NULL;
when ONE I HIGH => RETURN ZERO;
when others -> Store :- UNKNOWN;

end CASE;
when others -> Case il(i) is

when ONE I HIGH -> RETURN ZERO;
when others -> Store :- UNKNOWN;

end CASE;

A.1O



end CASE;
end LOOP;
RETURN not Store;

end nor bw;

FUNCTION xor bw ( il : logicvector mv ) RETURN logic_my is
variable Store : logic mv := il(il'low);

begin
IF il'length > 1 then

for i in il'low + 1 to il'high LOOP
CASE Store is

when ZERO I LOW => Case il(i) is
when ZERO I LOW => NULL;
when ONE I HIGH => RETURN ONE;
when others -> RETURN UNKNOWN;

end CASE;
when ONE I HIGH => Case il(i) is

when ZERO J LOW => RETURN ONE;
when ONE I HIGH -> NULL;
when others -> RETURN UNKNOWN;

end CASE;
when others -> RETURN UNKNOWN;

end CASE;
end LOOP;
RETURN ZERO;

else
RETURN Filter(Store);

end if;
end xor bw;

FUNCTION xnor bw ( il : logicvector mv ) RETURN logic mv is
variable Store logic mv :- il(il'low);

begin
IF il'length > 1 then

for i in il'low + 1 to il'high LOOP
CASE Store is

when ZERO I LOW -> Case il(i) is
when ZERO I LOW -> NULL;
when ONE I HIGH -> RETURN ZERO;
when others -> RETURN UNKNOWN;

end CASE;
when ONE I HIGH => Case il(i) is

when ZERO I LOW -> RETURN ZERO;
when ONE I HIGH -> NULL;
when others -> RETURN UNKNOWN;

end CASE;
when others -> RETURN UNKNOWN;

end CASE;
end LOOP;
RETURN ONE;

else
RETURN not Store;

end if;
end xnorbw;
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-- COMPARISON OPERATORS

FUNCTION - ( il, i2 : logic_my ) RETURN logic-mv is
constant table : logic mv table :=
(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE));

begin
RETURN table (il, i2);

end w-";

FUNCTION "/-" ( il, i2 : logic_my ) RETURN logic-mv is
constant table : logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO));

begin
RETURN table (il, i2);

end "/-";

FUNCTION "-" ( il, i2 : logicvector mv ) RETURN logic-mv is
alias Argl : logicvector_my ( 1 to il'length ) is il;
alias Arg2 : logicvector-mv ( 1 to i2'length ) is i2;
variable Store logic-my;

begin
assert il'length - i2'length report "Bus Width Mismatch!"

severity warning;
for i in il'range LOOP

Store :- Argl(i) = Arg2(i);
if Store /- ONE then

RETURN Store;

end if;
end LOOP;

RETURN ONE;
end 0-0;

FUNCTION "/-" ( il, i2 : logicvector mv ) RETURN logic mv is
alias Argl logic vector_my ( 1 to il'length ) is ii;
alias Arg2 logic vector mv ( 1 to i2'length ) is i2;
variable Store : logic_my;

begin
assert il'length - i2'length report "Bus Width Mismatch!"

severity warning;

for i in il'range LOOP
Store :- Argl(i) /- Arg2(i);
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if Store /- ONE then

RETURN Store;
end if;

end LOOP;
RETURN ONE;
end "/-";

BUS RESOLUTION FUNCTIONS

FUNCTION WiredOutputs ( signals : logicvector_my ) RETURN logic_my is
variable result logic mv :- HIGHZ; -- return 'Z' when no active

driver
constant Table logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN ),

UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN ),
UNKNOWN, UNKNOWN, ZERO, UNKNOWN, ZERO, ZERO, ZERO ),
UNKNOWN, UNKNOWN, UNKNOWN, ONE, ONE, ONE, ONE ),
UNKNOWN, UNKNOWN, ZERO, ONE, HIGHZ, LOW, HIGH ),
UNKNOWN, UNKNOWN, ZERO, ONE, LOW, LOW, HIGHZ ),
UNKNOWN, UNKNOWN, ZERO, ONE, HIGH, HIGHZ, HIGH ));

begin
for i in signals'range LOOP

result :- table ( result, signals(i) );
exit when result = UNKNOWN;

end LOOP;
return result;

end WiredOutputs;

FUNCTION Wired Or ( signals : logicvector_my ) RETURN logic my is
variable result logic-mv :- HIGHZ; -- return 'Z' when no active

driver
constant Table logic mv table :-
(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN ),

UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN ),
UNKNOWN, UNKNOWN, ZERO, ONE, ZERO, ZERO, ZERO ),
UNKNOWN, UNKNOWN, ONE, ONE, ONE, ONE, ONE ),
UNKNOWN, UNKNOWN, ZERO, ONE, HIGHZ, LOW, HIGH ),
UNKNOWN, UNKNOWN, ZERO, ONE, LOW, LOW, HIGHZ ),
UNKNOWN, UNKNOWN, ZERO, ONE, HIGH. HIGHZ, HIGH ));

begin
for i in signals'range LOOP

result :- table ( result, signals(i) );
exit when result - UNKNOWN;

end LOOP;
return result;

end WiredOr;

FUNCTION WiredAND ( signals : logicvector_my ) RETURN logic_my is
variable result logic-mv :- HIGHZ; -- return 'Z' when no active

driver
constant Table logic mv table :-

(( UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN ),
UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN ),
UNKNOWN, UNKNOWN, ZERO, ZERO, ZERO, ZERO, ZERO ),
UNKNOWN, UNKNOWN, ZERO, ONE, ONE, ONE, ONE ),
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( UNKNOWN, UNKNOWN, ZERO, ONE, HIGHZ, LOW, HIGH ),
( UNKNOWN, UNKNOWN, ZERO, ONE, LOW, LOW, HIGHZ ),
( UNKNOWN, UNKNOWN, ZERO, ONE, HIGH, HIGHZ, HIGH ));

begin
for i in signals'range LOOP

result :- table ( result, signals(i) );
exit when result - UNKNOWN;

end LOOP;
return result;

end WiredAND;

-- Miscellaneous Functions

-- FUNCTION name : Filter

-- translates logic_my states:

-- HIGH -> ONE
-- LOW -> ZERO

-- HIGHZ -> UNKNOWN

FUNCTION Filter ( input : logic mv ) RETURN logic_my is
constant filtertable : logic mvarray :-
( UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE);
begin

RETURN filter table( input );
end Filter;

Signal Transitions and Relationships

FUNCTION Posedge ( signal sl : logic-mv ) RETURN boolean is
begin

RETURN sl - ONE and sl'last value = ZERO and sl'event;
end Posedge;

FUNCTION Negedge ( signal sl : logic-my ) RETURN boolean is
begin

RETURN sl - ZERO and sl'last value - ONE and sl'event;
end negedge;

PROCEDURE Setupcheck ( constant inputle : time;

constant timespec : time;
constant message : string;
constant errlevel : severity_level) is

begin
assert inputle >- time_spec

report message & setup violation" severity errlevel;

end Setup_check;

PROCEDURE Holdcheck ( constant input le : time;

constant time_spec : time;
constant message : string;
constant err-level : severity_level) is

begin
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assert input_le > time_spec
report message & " setup violation" severity errlevel;

end Holdcheck;

FUNCTION Fdelay (newlv : in logic mv;
delay0l in time;
delayl0 in time) RETURN time is

begin
CASE newly is

when ZERO => RETURN delayl0;
when ONE -> RETURN delay01;
when others => if ( delay01 > delaylO ) then return delay01;

else

return delayl0;
end if;

end CASE;
end F_delay;

end BASICDEFS;
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Appendix B: The Behavioral Model

This appendix contains complete behavioral examples of sequential circuits specified via

the model proposed in Chapter 3. Each example is presented in the following order:

1. Packages and package bodies required by the design,

2. The sequential circuit's entity description,

3. The sequential circuit's architectural body,

4. The test bench entity and architectural body used to test the sequential circuit, and,

5. A simulation report generated from a sample run.

The first example is a synchronous Mealy sequential circuit. The second example is an

asynchronous Moore circuit. The final example is the CPU controller (a synchronous "hybrid"

sequential circuit). They may be found on the following pages:

Behavioral Design

Synchronous Mealy B.2

Asynchronous Moore B. 19

CPU Controller B.33
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-- File name: Sequential Circuit_Package.vhd

-- Description: The following VHDL code is a draft version of
-- the Statemachine package required to support
-- the various architectural models.

-- Status: It is complete.

-- Support files: BA3ICDEFS.vhd (EIA's BASICDEF's package)

-- Creation Date: 11 July 90

-- Created by: Rick Miller
-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

-- Package declarations

use work.BASICDEFS.all;
-- the EIA Standard package BASICDEFS

package SequentialCircuit_Package is

Type States is (
UnknownState,
First State,
SecondState,

ThirdState

constant First State_output : logic_vector my :- "001";
constant Second Stateoutput : logic vector my : "010";
constant ThirdState_output : logicvector_mv : "100";

Type TransitionConditions is (
NoTransition,

gotoFirstState,
gotoSecondState,
gotoThirdState
);1

Type Transition Conditions vector is array (natural range <>) of
Transition-Conditions;
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-- Transition Resolution Function

Function Transition Resolution (il : Transition Conditions vector)
return TransitionConditions;

end SequentialCircuitPackage;

package body Sequential_CircuitPackage is

-- Transition Resolution Function

Function TransitionResolution (il : TransitionConditions vector)
return TransitionConditions is

begin
for I in il'Range loop

RETURN il(I);

end loop;
RETURN NoTransition;

end;

end SequentialCircuitPackage ;
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-- File name: Sequential Circuit .vhd

-- Description: synchronous Mealy state machine entity.

-- Status: It is complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)

-- Creation Date 11 July 90

-- Created by: Rick Miller
-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

-- Entity: SequentialCircuit

use work.Sequential CircuitPackage .all;
-- This package makes the appropriate type and variable
-- declarations required by the particular sequential circuit.

use work. BASICDEFS.all;
-- The BASICDEFS package is pressumed located in a VHDL design
-- library sublibrary named EIA.

entity Sequential Circuit is
-- generico;

port(
input_signals : in logicvector_mv (1 downto 0);
out_1,
out_2,
out 3 : out logic my := 'U';
RESET : in logic_mv;
CLOCK : in logic_mv

end Sequential-Circuit ;

B.4



-- File name: SequentialCircuit.vhd

-- Description: synchronous Mealy state machine architecture.

-- Status: It is complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- Sequential CircuitPackage.vhd

-- Creation Date 11 July 90

-- Created by: Rick Miller
-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

-- Architecture: Sequential-Circuit

architecture synchmealy_arch of SequentialCircuit is

signal PresentState, NextState : States := Unknown-State;

siynal Transition : Transition Resolution
Transition Conditions
BUS - No-Transition;

signal state out 1,
state out_2,
stateout_3 : WiredOutputs logic_my BUS :- 'U';

begin
out 1 <= stateout_1;
out 2 <= state out 2;
out-3 <= state-out-3;

-- synchronize the state to state transitions to the clock.
process (clock)

begin
if (clock - 'I' and clock'event)

then Present-State <- Next-State;

end if;
end process;

-- initialize and reset capability
-- First State Process
RESETBLOCK:block (RESET - '1')

begin
process (GUARD) begin

if GUARD then Transition <- gotoFirstState;
else

Transition <= null;
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end if;
end process;
end block RESETBLOCK;

-- the State Transitions
process (transition)

begin
case PresentState is

when FirstState =>

case transition is
when gotosecondState =>

Next State <= SecondState;
when goto Third State =>

Next State <= Third State;
when others >

end case;

when Second State =>
case transition is

when goto First state =>
Next State <= FirstState;

when gotoThirdstate =>

Next State <= Third State;
when others >

end case;

when Third State >

case transition is
when goto First state =>

Next State <= First State;
when gotoSecondstate =>-

NextState <= SecondState;
when others >

end case;

when Unknown State >
case transition is

when goto First state ->
Next State <= First State;

when others >

end case;

end case;
end process;

-- First State Process
FIRST:block (PresentState - FirstState)

begin
process (GUARD, INPUT-signals) begin
if GUARD then

case INPUTsignals is
when 110" -> Transition <- goto_SecondState;

stateout 1 <- Second StateOutput(0);
stateout-2 <- SecondStateOutput(l);
state out_3 <- SecondStateOutput(2);
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when "11" -> Transition <- goto Third State;
stateout_1 <- ThirdStateOutput(0);

state_out_2 <= Third StateOutput(l);
stateout_3 <= ThirdState_Output(2);

when others ->
transition <= no transition;
state out 1 <= '0';
state out 2 <= '0';
state out 3 <= '0';

end case;
else

transition <= null;
state out 1 <- null;
state-out_2 <- null;
state-out-3 <- null;

end if;
end process;
end block FIRST;

-- Second State Process
SECOND:block (PresentState - SecondState)

begin
process (GUARD, INPUTsignals) begin
if GUARD then

case INPUT signals is
when "01" -> Transition <- goto_First_State;

stateout 1 <- FirstStateOutput (0);
state out 2 <= FirstState Output (1);
stateout_3 <= FirstStateOutput (2);

when "11" -> Transition <= goto ThirdState;
stateout 1 <= ThirdStateOutput (0);
state out 2 <= ThirdState Output (1);
stateout_3 <- ThirdStateOutput (2);

when others ->

Transition <= no tx...ition;

state out 1 <= '0';
state out 2 <- '0';
state out 3 <= '0';

end case;
else

transition <- null;

state out 1 <- null;
state out 2 <- null;
state out_3 <- null;

end if;
end process;
end block SECOND;

-- Third State Process
THIRD:block (Present-State - ThirdState)

begin
process (GUARD, INPUT-signals) begin
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if GUARD then
case INPUTsignals is

when "01" -> Transition <- goto_First_State;
state-out_1 <- FirstStateOutput (0);
state out 2 <- FirstStateOutput (1);
state out_3 <- FirstmateOutput(2);

when "10" -> Transition <= gotoSecond State;
state out_1 <- SecondState_Output(0);
stateout_2 <- SecondStateOutput(l);
stateout_3 <= SecondStateOutput(2);

when others ->

transition <= NOTRANSITION;
state out 1 <= '0';
state out 2 <- '0';
state out 3 <= '0';

end case;
else

transition <= null

state out 1 <- null;
state out 2 <- null;

state out_3 <- null;
end if;
end process;
end block THIRD;

end synchmealy_arch;
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-- File name: testbench.vhd

-- Description: testbench for synchronous Mealy state machine
-- architecture.

-- Status: It is complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- SequentialCircuitPackage.vhd

-- Creation Date 1i July 90

-- Created by: Rick Miller

-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

-- Architecture: Sequential-Circuit

use work.BASICDEFS.all;
use WORK.Sequential CircuitPackage.all;
use STD.SIMULATOR STANDARD.all;
use STD.TEXTIO.alI;

entity TEST BENCH is
end TESTBENCH;

architecture synchMealy_example of TESTBENCH is

component state machine
port(

input_signals : in logicvectormv (1 downto 0);
out 1,
out_2,

out 3 Out logic_my;
RESET : in logic my;
CLOCK : in logicmy

end component;

for all : SequentialCircuit use
entity WORK.SequentialCircuit (synchmealy_arch);

signal instruction logic vector mv (1 downto 0) :- "00";
signal CLOCK : logic my;
signal RESET : logic my;
signal MOORESTATE : STATEs;
signal OUT_1,

OUT_2,
OUT_3 : logic my;

begin
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RESET <- '1' , '0' after 5ns;

process
file INSTRUCTIONS : TEXT is in "MEALYINSTRUCTIONS";
variable L : Line;
variable machinecode : bit-vector (1 downto 0);
begin

readline(INSTRUCTIONS, L);
if ENDFILE(INSTRUCTIONS) then terminate; end if;

read(L, machinecode);
case achine-code is

when "00" => instruction <= "00";
when "01" => instruction <= "01";
when "10" -> instruction <- "10";
when "ii" > instruction <= "1i";

end case;
wait for 30ns;

end process;

process
begin

set maximums(10000,100);
tracing_on;
wait for 200ns;
terminate;

end process;

make Clock : process
begin

wait for 2ns;
CLOCK <- '1';
wait for 4ns;
CLOCK <- '0';

wait for 2ns;
end process makeClock;

UUT : SequentialCircuit
port map ( instruction,

OUT 1, OUT_2, OUT_3,
RESET,
CLOCK

end synchMealy_example;
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-- PACKAGE: StateMachinePackage

-- File name: moorepkg.vhd

-- Description: The following VHDL code is a draft version of
-- the State machine package required to support
-- the various architectural models.

-- Status: It is complete and has been successfully simulated.

-- Support files: EIAbasicdefs.vhd (EIA's BASICDEF's package)

-- Creation Date: 11 July 90

-- Created by: Rick Miller

-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;
-- the EIA Standard package BASICDEFS

package StateMachinePackage is

Type States is
UnknownState,
FirstState,
Second State,
Third State

constant FirstStateoutput : logicvector_mv :- "001";
constant SecondState_output : logic_vector mv :- "010";
constant ThirdState_output : logicvector mv := "100";

Type TransitionConditions is (
NoTransition,
goto First State,
gotoSecond-State,

gotoThirdState

Type Transition Conditions vector is array (natural range <>) of
Transition Conditions;
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-- Transition Resolution Function

Function Transition Resolution (il : TransitionConditionsvector)
return Transition-Conditions;

end StateMachinePackage;
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-- PACKAGE BODY for StateMachinePackage

-- File name: moore_pkg_body.vhd

-- Description: The following VHDL code is a draft version of the
-- generic state machine entity.

-- Status: It is complete and has been successfully simulated.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)

-- Creation Date 12 July 90

-- Created by: Rick Miller

-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

package body StateMachinePackage is

-- Transition Resolution Function

Function Transition Resolution (il : TransitionConditions vector)
return Transition Conditions is

begin
for I in il'Range loop

RETURN il(I);

end loop;
RETURN No-Transition;

end;

end StateMachinePackage;
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-- Entity: StateMachine for asynchronous moore example

-- File name: state machine .vhd

-- Description: The following VHDL code is a draft version of the
-- generic state machine entity.

-- Status: It is complete and has been successfully simulated.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- MOORE pkg.vhd (State_machinepackagae)

MOOREpkgbody.vhd (body of above)
-- testbench.vhd

-- Creation Date 11 July 90

-- Created by: Rick Miller
-- Address: AFIT/ENG

-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

use work.StateMachinePackage.all;
-- This package makes the appropriate type and variable

declarations
-- required by the particular state machine.

use work.BASICDEFS.all;
-- The BASICDEFS package is pressumed located in a VHDL design
-- library sublibrary named EIA.

entity StateMachine is
-- generico;

port(
inputsignals : in logicvector-mv (1 downto 0);
out_1,
out_2,
out_3 : out logic my :- 'U';
RESET : in logic mv

end State-Machine;
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-- ARCHITECTURE: Asynchronous Moore for entity StateMachine

-- File name: synchmoorearch.vhd

-- Description: The following VHDL code is a draft version of the
-- asynchronous moore state machine.

-- Status: It is complete and has been successfully simulated.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- MOORE_pkg.vhd (Statemachine_packagae)
-- MOOREpkg_body.vhd (body of above)

-- asynchmooreentity.vhd

-- testbench.vhd

-- Creation Date 11 July 90

-- Created by: Rick Miller
-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

architecture AsynchMoore of State-Machine is

-- Declarative block
-- The types States and Transition Conditions are found
-- in the StateMachinePackage. (Moore_pkg.vhd)

-- The type logic mv is found in the package BASICDEFS.
-- (EIAbasicdefs.vhd)

-- The resolution function Transition Resolution is
-- found in the StateMachine_Package. (Moorepkg.vhd)

-- The resolution function WiredOutputs is found in

-- the package BASICDEFS. (EIAbasicdefs.vhd)

signal PresentState, NextState : States :- Unknown-State;

signal Transition : Transition Resolution
Transition Conditions
BUS :- NoTransition;

signal stateout_1,
stateout_2,
state out_3 : WiredOutputs logic my BUS :- 'U';

begin
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-- For now, the state outputs are assigned to temporary signals,

-- stateoutl, state out2, and, stateout_3. These signals
-- are then assigned to the entity's ports here.

out_1 <= stateout_1;
out 2 <- stateout_2;
out-3 <= state out_3;

-- The following block operates concurently with the state machine.
-- It provides the ability to reset or initialize the
-- machine to a known starting state.

RESETBLOCK:block (RESET - '1')
begin
process (GUARD) begin

if GUARD then Transition <= gotoFirstState;
else

Transition <- null;
end if;

end process;
end block RESETBLOCK;

-- This process determines the "next" state of the state machine.
-- Sensitive to changes in the signal transition, this process only
-- operates when a state to state transition is requested.
-- Optional timing information can be inserted here, such as:
-- PresentState <- SOMENEWSTATE after some delaytime;

process (transition)
begin
case PresentState is

when FirstState ->
case transition is

when gotosecondState ->

PresentState <- SecondState;
when goto Third State =>

Present State <- Third State;
when others >

end case;

when SecondState ->

case transition is
when gotoFirst state =>

Present State <= FirstState;
when goto_Third state =>

Present State <- Third State;
when others =>

end case;

when Third State =>
case transition is

when goto_First state ->

PresentState <- First State;
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when goto Second state =>
PresentState <= SecondState;

when others >
end case;

when UnknownState ->

case transition is
when gotoFirststate =>

Present State <= First-State;
when others >

end case;

end case;
end process;

-- The following blocks represent the individual states of the
-- state machine. Each block has a guard statement to
-- determine the operation of the block. That guard signal

along with INPUT signals determines the state operation.
-- If the guard is true, and inputs have changed, then
-- the outputs or the transition variable are set.
-- If the guard is false, null drivers are assigned to the
-- signals.
-- To improve the design's readability, each process may
-- be written to call subprograms which in turn would
-- represent the state's functionality.

-- First State Process
FIRST:block (Present-State - FirstState)

begin
process (GUARD, INPUTsignals) begin
if GUARD then

case INPUTsignals is
when "10" -> Transition <- gotoSecondState;
when "11" -> Transition <- gotoThirdState;
when others =>

transition <- notransition;
stateout 1 <- FirstState Output(0);
stateout 2 <- FirstStateOutput(1);
stateout_3 <- FirstStateOutput(2);

end case;
else

transition <- null;
state out 1 <- null;
state out 2 <- null;
state out_3 <- null;

end if;
end process;
end block FIRST;

-- Second State Process
SECOND:block (PresentState - SecondState)

begin
process (GUARD, INPUT_signals) begin
if GUARD then

case INPUT-signals is
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when "01" -> Transition <= goto First State;
when "11" -> Transition <= gotoThird_State;
when others ->

Transition <= no transition;
state out 1 <= SecondStateOutput(0);
state out_2 <= SecondStateOutput(1);
stateout_3 <= SecondStateOutput(2);

end case;
else

transition <- null;
state out_1 <- null;
state out 2 <= null;
state out_3 <= null;

end if;
end process;
end block SECOND;

-- Third State Process
THIRD:block (Present-State - ThirdState)

begin
process (GUARD, INPUTsignals) begin
if GUARD then

case INPUTsignals is
when "01" -> Transition <= gotoFirstState;
when "10" > Transition <= goto_SecondState;
when others ->

transition <- NO TRANSITION;

state out 1 <= ThirdStateOutput(0);
state_out_2 <- Third_StateOutput (1);
stateout_3 <= ThirdStateOutput (2);

end case;
else

transition <= null ;
state out 1 <- null;
state out 2 <- null;
state out_3 <- null;

end if;
end process;
end block THIRD;

end asynchMoore;
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-- Test Bench description for asynchronous moore example

-- File name: testbench.vhd

-- Description: The following VHDL code provides a test bench
-- capability for testing the asynchronous moore
-- state machine.

-- Status: It is complete and has been successfully simulated.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- MOOREpkg.vhd (Statemachine_packagae)
-- MOORE_pkg_body.vhd (body of above)

-- Creation Date 11 July 90

-- Created by: Rick Miller
-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;
use WORK.StateMachine Package.all;

use STD.SIMULATOR STANDARD.all;
use STD.TEXTIO.all;

entity TESTBENCH is
end TESTBENCH;

architecture asynchMoore_example of TEST-BENCH is

component state machine
port(

input_signals : in logicvector mv (1 downto 0);
out_1,
out_2,
out 3 : out logic my;
RESET : in logic_mv

end component;

for all : state machine use
entity WORK.statemachine(asynchmoore);

signal instruction : logicvector_mv (1 downto 0) :-00";

signal CLOCK : logic my;
signal RESET : logic mv;
signal MOORESTATE : STATEs;
signal OUT 1,

OUT_2,
OUT_3 : logic_my;
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begin

RESET <- 'I' , '0' after 5ns;

process
file INSTRUCTIONS : TEXT is in "MOORE INSTRUCTIONS";
variable L : Line;
variable machine-code : bit vector (1 downto 0);
beain

readline(INSTRUCTIONS, L);
if ENDFILE(INSTRUCTIONS) then terminate; end if;

read(L, machinecode);
case machinecode is

when "00" => instruction <= "00";
when "01" => instruction <= "01";
when "10" -> instruction <= "10";

when "ll" => instruction <= "11";
end case;

wait for 30ns;

ena process;

process
begin

set maximums(10000,100);
tracing_on;
wait for 200ns;
terminate;

end process;

makeClock : process
begin

wait for 2ns;
CLOCK <- '1';
wait for 4ns;
CLOCK <- '0';

wait for 2ns;
end process makeClock;

UUT : State Machine
port map ( instruction,

OUT 1, OUT_2, OUT_3,
RESET

end asynch Moore example;
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-- File name: CPUPackage.vhd

-- Description: State, Transition, Constant, and Function package
-- for the 8 instruction CPU controller.

-- Status: Complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEF's package)

-- Creation Date: 1 August 90

-- Created by: Rick Miller
-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

-- Package declarations

use WORK.BASICDEFS.all;
-- the EIA Standard package BASICDEFS

package CPUPackage is

type STATEs is

UnknownState,
AC_getsAC_plus DR State,
AC_getsAC and DR State,
ACgetsNOT AC State,
READ M State,
WRITEMState,
DR_gets AC State,
AC_gets DR State,

AR_getsDRADRState,
IRgets DR OP State,
AR_getsPCState,

RIGHT SHIFTACState,
JUMPState,
READINSTRUCTION State

Type Transition Conditions is
NoTransition,
goto_RESET,

gotoAC getsDR,

gotoACgets AC plusDR,
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goto ACgetsAC andDR,

goto_IR_getsDROP,
gotoAR getsDRADR,

goto ARgets PC,
gotoACgetsNOT AC,

gotoRIGHT_S HIFTAC,
goto WriteM,

gotoREADM,
gotoDR getsAC
gotoREADINSTRUCTION,
gotoJUMP

Type Transition Conditions-vector is array (natural range <>) of
TransitionConditions;

-- Transition Resolution Function

Function Transition Resolution (il : TransitionConditionsvector)
return TransitionConditions;

subtype logic mv bus is Wired Outputs logic_mv;
type logicvector mvbus is array (natural range <>) of

logic mvbus;
constant CO : logic vector my bus (12 downto 0)

:- "0000000000001";
constant C1 : logic_vector my bus (12 downto 0)

:- "0000000000010";
constant C2 : logicvector mvbus (12 downto 0)

:- "0000000000100";
constant C3 : logic_vector my bus (12 downto 0)

:- "0000000001000";
constant C4 : logic_vector my bus (12 downto 0)

:= "0000000010000";

constant C5 : logic_vector my bus (12 downto 0)
:- "0000000100000";

constant C6 : logic_vector mvbus (12 downto 0)

:- "0000001000000";
constant C7 : logic_vector mv bus (12 downto 0)

:- "0000010000000";
constant C8 : logic_vector mv bus (12 downto 0)

:= "0000100000000";
constant C9_C3 : logic vector my bus (12 downto 0)

:= "0001000001000";
constant C10 : logic_vector mv bus (12 downto 0)

:- "0010000000000";
constant Cli : logic_vector mv bus (12 downto 0)

:- "0100000000000";
constant C12 : logic_vector mv bus (12 downto 0)

:= "1000000000000;
constant Uninit : logicvector mv bus (12 downto 0)

:; "UUUUUUUUUUUUU";

constant zeroes : logic vector mv bus (12 downto 0)
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: "UUUUUUUUUUUUU";

Type instructions is

NOP,
LOAD,
STORE,
ADD,
BITAND,
JUMP,
JUMPZ,
COMP,
RSHIFT

end CPU-Package;
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package body CPUPackage is

-- Transition Resolution Function

Function TransitionResolution (il : TransitionConditions vector)
return Transition Conditions is

begin
for I in il'Range loop

RETURN il(I);

end loop;
RETURN No-Transition;

end;

end CPU Package;
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-- File name: cpu_controller.vhd

Description: Entity and Architecture for 8 instruction cpu
-- controller

-- Status: Complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEF's package)

-- Creation Date: 1 August 90

-- Created by: Rick Miller

-- Address: AFIT/ENG
-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

-- Entity

use work. BASICDEFS.all;
use work. CPUpackage.all;

entity CPUCONTROLLER is
-- generic ();

port( instruction : in instructions := NOP
CLOCK : in logic my;
RESET : in logic mv
ZEROFLAG : in logic mv;
Controlbus : out logicvector my bus (12 downto 0)

:= "XOOCIXXXXX-X"

end;

-- Architecture

architecture BEHAVIORAL of CPU CONTROLLER is
signal PresentState,

NextState : STATEs := Unknown State;
signal Transition : Transition Resolution

Transition Conditions
BUS
:- No Transition;

signal Control : logic vector mv b'2s ( 12 downto 0 ) BUS
"XXXXXXXXXXXXX";

begin
control-bus <- control;

CLOCKSYNCH:process (clock) begin
if posedge( clock ) then PresentState <- Next-State;
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end if;
end process CLOCKSYNCH;

RESET-BLOCK : process (RESET) begin
if RESET - '1' and RESET'event then

Transition <- gotoRESET;
else

Transition <= null;
end if;

end process RESETBLOCK;

process (Transition) begin

case PresentState is

when ARgetsPCState >

case Transition is
when goto RESET >

Next State <= ARgets F' State;
when others ->

NextState <= READIN%-RUCTIONState;
end case;

when READ M State >

case Transition is
when goto AC getsDR =>

NEXTSTATE <= AC_getsDRState;

when gotoAC_gets_ ACplusDR=>

NEXTSTATE <= AC_getsACplusDRState;

when gotoAC_gets AC andDR=>
NEXT_STATE <= AC_gets AC and DR State;

when goto RESET =>

NextState <= ARgets PC State;

when others ->

end case;

when READ INSTRUCTIONState =>

case Transition is
when goto_IRgets DR OP ->

NEXTSTATE <- IRgetsDROPState;

when gotoRESET ->
NextState <- ARgets PC State;

when others =>
end case;

when IRgetsDROPState ->

case Transition is
when goto AR,_getsDRADR =>

NEXTSTATE <- ARgets DR ADRState;
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when gotoARgetsPC =>
NEXTSTATE <= ARgets PC State;

when gotoJUMP =>

NEXT STATE <= TUMPState;

when goto_AC_getsNOT AC=>
NEXTSTATE <= AC_getsNOT AC State;

when gotoRIGHT SHIFT AC=>

NEXTSTATE <= RIGHTSHIFTACState;

when goto RESET =>
NextState <= AR gets PC State;

when others ->

end case;

when DR gets AC State ->

case Transition is
when goto Write M =>

NEXTSTATE <- WRITEMState;

when goto RESET =>
Next-State <- ARgets PC State;

when others ->
end case;

when AC_gets DR State =>
case Transition is

when goto_AR_gets_PC I gotoRESET =>

NEXTSTATE <- AR_gets PC State;

when others ->

end case;

when ARgetsDRADRState ->
case Transition is

when gotoREAD M ->

NEXTSTATE <= READMState;

when goto DR getsAC->
NEXTSTATE <= DRgetsACState;

when gotoRESET =>
Next-State <= AR_gets PC State;

when others ->

end case;

when AC_gets_AC_plus DR State =>

NEXTSTATE <- AR_getsPCState;

when AC_gets AC and DR State ->
NEXT-STATE <- ARgetsPC State;
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when AC_getsNOTACState =>

NEXTSTATE <= ARgetsPCState;

when JUMP State =>
NEXTSTATE <= ARgetsPCState;

when WRITE M State =>

case Transition is
when gotoARgetsPC =>

NEXTSTATE <= ARgets PC State;

when others =>

end case;

when RIGHT SHIFT AC State =>

NEXTSTATE <= ARgetsPCState;

when Unknown State =>
case Transition is

when goto RESET =>

NEXTSTATE <= ARgets PC State;
when others >

end case;

when others =>

end case;
end process;

-- The following processes are for the individual states of
-- the State Machine. These processes handle the output signal
-- assignments and determine the appropriate transition
-- condition in order to exit the state.

-- ARgetsPC state

ARgetsPC: block (PresentState = ARgetsPCState) begin
process (GUARD) begin

if GUARD then
Control <- C10;
Transition <= gotoReadInstruction;

else
Transition <= Null;

Control <= null;

end if;
end process;
end block AR_gets_PC;

-- READ M state
READM: block (PresentState - READ_M_State) begin

process (GUARD) begin
if GUARD then

Control <- C3;

else
Control <- null;

end if;

B.40



end process;

process (Clock)
variable clock-count : integer := 0;

begin
if GUARD and negedge( clock ) then

clock count :- clock count + 1;
if clock count - 2 then

clock count :- 0;
case INSTRUCTION is

when LOAD ->
Transition <= gotoACgetsDR;

when ADD =>
Transition <- gotoACgets AC plusDR;

when BIT AND =>
Transition <= gotoAC_gets AC and DR;

when others >

end case;
end if;

else
Transition <- Null;

end if;
end process;
end block READM;

-- READ INSTRUCTION state
-- This state not only reads the instruction from memory,
-- but also increments the PC.
READInstruction: block (Present-State - READInstructionState) begin

process (GUARD) begin
if GUARD then

Control <- C9_C3;
else

Control <- null;
end if;

end process;

process (Clock)
variable clock-count : integer :- 0;

begin
if GUARD and negedge( clock ) then

clock count :- clock-count + 1;
if clock count = 2 then

clock count :- 0;
Transition <- gotoIRgets DR OP;

end if;
else

Transition <- Null;
end if;

end process;

end block READ Instruction;
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-- IRgetsDROPState state
IRgetsDROP: block (PresentState = IR-getsDROPState) begin

process (GUARD) begin
if GUARD theai

control <- ClI;

case INSTRUCTION is
when LOAD I STORE I ADD I BITAND ->

Transition <= gotoAR getsDRADR;

when JUMPZ ->
if ZEROFLAG ='03 then

Transition <= gotoJUMP;
else

Transition <- gotoARgetsPC;
end if;

when JUMP =>

Transition <= goto_JUMP;

when COMP ->

Transition <= gotoACgetsNOTAC;

when RSHIFT ->
Transition <= gotoRIGHTSHIFTAC;

when others =>

end case;
else

Transition <= Null;

Control <= null;
end if;

end process;
end block IR_getsDR OP;

-- DR-getsAC state
DRgetsAC: block (PresentState - DRgetsACState) begin

process (GUARD) begin
if GUARD then

Control <- C5;
Transition <- gotoWRITEM;

else
Transition <- Null;

Control <- null;

end if;
end process;
end block DR_getsAC;

-- AC getsDR state
ACgets_D: block (PresentState = AC_gets DR State) begin

process (GUARD) begin
if GUARD then

Control <- C6;
Transition <- gotoAR getsPC;

else
Transition <- Null;

Control <- null;
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end if;
end process;
end block AC_gets_DR;

-- ARgets DR ADR state
ARgetsDRADR: block (PresentState = ARgetsDRADRState) begin

process (GUARD) begin
if GUARD then

Control <= C7;
case INSTRUCTION is

when LOAD I BIT AND I ADD =>
Transition <= gotoREADM;

when STORE ->

Transition <= gotoDRgetsAC;

when others =>

end case,
else

Transition <- Null;

Control <= null;

end if;
end process;
end block ARgetsDRADR;

-- ACgets ACyplusDR state
ACgetsACplusDR: block (Present-State = AC_gets AC_plus DR State)
begin

process (GUARD) begin
if GUARD then

Control <- CO;
Transition <- goto_ARgetsPC;

else
Transition <- Null;
Control <- null;

end if;
end process;
end block ACgets_AC-plusDR;

-- ACgetsAC andDR state
AC_gets AC and DR: block (Present State = ACgetsAC andDRState) begin

process (GUARD) begin

if GUARD then
Control <- Cl;
Transition <- gotoARgetsPC;

else
Transition <- Null;
Control <- null;

end if;
end process;

end block ACgetsAC andDR;

-- ACgets NOTAC state
AC getsNOTAC: block (Present-State - AC_getsNOT AC State) begin

process (GUARD) begin
if GUARD then
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Control <= C2;
Transition <= gotoAR getsPC;

else
Transition <= Null;
Control <= null;

end if;
end process;
end block ACgets_NOTAC;

-- JUMP and JUMPZ state
PCgets DR ADR: block (PresentState = JUMPState) begin

process (GUARD) begin

if GUARD then
Control <= C8;

Transition <= gotoARgetsPC;

else
Transition <= Null;
Control <= null;

end if;
end process;
end block PCgets DRADR;

-- WRITE M state
WRITEM: block (PresentState = WRITE M State) begin

process ( GUARD ) begin
if GUARD then

Control <= C4;
else

Control <= null;
end if;

end process;

process (clock)
variable clock-count : integer := 0;

begin
if GUARD and negedge( clock ) then

clock count := clock count + 1;
if clock count = 2 then

clock-count :- 0;
Transition <= gotoAR getsPC;

end i.;
else

Transition <= null;
end if;

end process;
end block WRITE M;

-- RIGHT SHIFT AC state
RIGHTSHIFTAC: block (PresentState = RIGHTSHIFT AC State) begin

process (GUARD) begin
if GUARD then

Control <- C12;

Transition <- gotoARgetsPC;
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else
Transition <= Null;

Control <= null;
end if;

end process;
end block RIGHT SHIFT AC

end BEHAVIORAL;
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-- File name: testbench.vhd

-- Description: testbench for 8 instruction cpu

-- controller

-- Status: Complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEF's package)
-- cpu.vhd

-- Creation Date: 1 August 90

-- Created by: Rick Miller

-- Address: AFIT/ENG

-- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;
use work.CPUpackage.all;
use STD.SIMULATOR STANDARD.all;
use STD.TEXTIO.all;

entity TESTBENCH is
end TESTBENCH;

architecture CPU_588 of TESTBENCH is

component CPUCONTROLLER
-- generic ();

port( instruction : in instructions := NOP
CLOCK : in logic my;
RESET : in logic_mv
ZERO-FLAG : in logic mv;

Control-bus : out logic vector mvbus (1: downto 0)

- "XXXDCOCKOXX"

end component;

for all : CPUCONTROLLER use entity WORK.CPUCONTROLLER(BEHAVIORAL);

signal instruction : instructions := NOP;

signal RESET : logic m := 'X';

signal CLOCK logicmy :V 'X';

signal zero_flag : logic-mv :- 'X';

signal controlline : logic vector mvbus (12 downto 0)

- "XXXXXXXXXXXXX";

begin
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process
file CPUINSTRUCTIONS TEXT is in "CPUINSTRUCTIONS";
variable L : Line;
variable machine code bit vector(4 downto 0);

alias machine-instruction : bit vector(2 downto 0)
is machine code(2 downto 0);

begin

readline(CPUINSTRUCTIONS, L);
if ENDFILE(CPUINSTRUCTIONS) then terminate; end if;
read(L, machine-code);

case machine code(4) is
when '0' -> ZERO FLAG <= '0';

when 11' -> ZEROFLAG <- '1';

end case;

case machine code(3) is
when '0' => RESET <= '0';

when '1' => RESET <= '1';
end case;

wait until control line = C9_C3; -- This indicates that the
--- CPU Controller has issued
-- a read memory command

-- during the READ INSTRUCTION

-- state.

case machine instruction is
when "600" -> instruction <- LOAD;
when "001" => instruction <- STORE;
when "010" -> instruction <- ADD;
when "011" -> instruction <- BITAND;
when "100" -> instruction <- JUMP;
when "101" -> instruction <- JUMPZ;
when "110" -> instruction <- COMP;
when "Ill" -> instruction <- RSHIFT;

end case;
end process;

process
begin

set maximums(10000,100);
tracing_on;
wait for 10OOns;
terminate;

end process;

make Clock : process
begin

wait for 2ns;
CLOCK <- '0';
wait for 4ns;
CLOCK <- '1';
wait for 2ns;
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end process makeClock;

UUT : CPU CONTROLLER
port map ( instruction,

CLOCK,
RESET,
ZEROFLAG,
Control-line );

end CPU 588;
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Appendix C: The Structural Model.

This appendix contains a complete listing of all logic gates and flip-flops defined for use

within a sequential circuit's architecture. Additionally, another example structural architecture of a

sequence detector is included. The logic gates and flip-flops are:

1. ANDm A multiple input AND gate.

2. NANDm A multiple input NAND gate.

3. ORm A multiple input OR gate.

4. NORm A multiple input NOR gate.

5. INVERTER a single input, single output inverter.

6. Dff A docked D flip-flop with set and clear, and,

7. D ff no clk An asynchronous D flip-flop with set and clear.

They may be found on the following pages:

DeAce EC.2

1. ANDm C.2

2. NANDm C.2

3. ORm C.3

4. NORm C.3

5. INVERTER C.4

6. D1f C.5

7. Diff no clk C.6

8. Sequence Detector C.7
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-- ANDm and NANDm logic gates

use work. BASICDEFS.all;
entity ANDm is

generic(
propagation-delay : time := 0 ns

port ( Inl in logicvector_mv ;
outl out logic_my :- 'U'

end ANDm;

architecture BEHAVIORAL of ANDm is
begin

outl <= andbw( Inl ) after propagation-delay;

end BEHAVIORAL;

use work. BASICDEFS.all;

entity NANDm is

generic(
propagationdelay : time := 0 ns

port(Inl : in logicvector-mv;
outl : out logic_mv := 'U'

end NANDm;

architecture BEHAVIORAL of NANDm is
begin

outl <- nandbw( Inl ) after propagation_delay;

end BEHAVIORAL;
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-- O~m and NORm logic gates

use work.BASICDEFS.all;
entity ORm is

generic(
propagation-delay : time := 0 ns

port(Inl in logicvector mv
outl out logic_mv 'U'

end ORm;

architecture BEHAVIORAL of ORm is

begin

outl <- orbw( Inl ) after propagation-delay;

end BEHAVIORAL;

use work BASICDEFS.all;
entity NORm is

generic(
propagationdelay time := 0 ns

port(Inl : in logicvector_mv
outl : out logic_my :_ 'U'

end NORm;

architecture BEHAVIORAL of NORm is
begin

outl <- norbw( Inl ) after propagationdelay;

end BEHAVIORAL;
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-- Inverter logic gate

use work. BASICDEFS.all;
entity inverter is

generic(
propagationdelay : time := 0 ns

port
inl : in logic_my :- 'U';
outl : out logic_my 'U'

end inverter;

architecture behavioral of inverter is
begin

outl <- not inl after propagationdelay;

end behavioral;
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-- D flip-flop with clock, set, and clear

use work.BASICDEFS.all;
entity D ff is

generic ( propagationdelay time := 0 ns );
port (

D in in logic_my := 'U';
Q0_out out logic_mv 'U';
CLK in logic mv := 'U';
Clear in logic_mv 'U';

SET in logic_mv 'U'

end D ff;

architecture BEHAVIORAL of D ff is

begin
process (CLK)
begin

if (CLK'event and CLK = '1') then

if ((Clear = '1') and (SET = '1')) then

Q_out <- 'U' after propagationdelay; end if;

if ((Clear - '0') and (SET = '1')) then
Qout <= '1' after propagation-delay ; end if;

if ((Clear - '1') and (SET = '0')) then

Q_out <- '0' after propagationdelay; end if;

if (LClear - '0') and (SET = '0')) then
Q_out <- D in after propagationdelay; end if;

end if;
end process;

end BEHAVIORAL;
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-- Asynchronous D flip-flop with set and clear

use work. BASICDEFS.all;
entity D ff noclk is

generic ( propagationdelay time 0 ns );
port (

D in : in logic_my := 'U';
Q_out : out logic_mv :- 'U';
Clear : in logic_my := 'U';
SET : in logic_my 'U'

end D ff no clk;

architecture BEHAVIORAL of D ff no clk is

begin
process ( Clear, SET, D in
begin

if ((Clear - '1') and (SET = '1')) then

Q_out <- 'U' after propagationdelay; end if;

if ((Clear - '0') and (SET = '1')) then

Q_out <- 'I' after propagationdelay ; end if;

if ((Clear - '1') and (SET - '0')) then

Qout <- '0' after propagation-delay; end if;

if ((Clear - '0') and (SET - '0')) then

Q_out <- D in after propagationdelay; end if;

end process;

end BEHAVIORAL;
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-- Sequence Detector constructed of NAND logic

use WORK.basicdefs.all;

entity SequenceDetector is
-- generic ( );

port (
Xin : in logic_mv : 'U';
CLOCK : in logic_my 'U';
Zout : out logic_mv 'U';
SET : in logic_my : 'U';
CLEAR : in logic_my 'U'

end Sequence-Detector;

architecture STRUCTURAL2 of SequenceDetector is

component inverter
generic( propagation-delay : time := 0 ns );
port (

inl : in logic_my 'U';
out1 : out logic_my 'U'

end component;

for all : inverter use

entity WORK.inverter(BEHAVIORAL);

component NANDm
generic( propagationdelay : time := 0 ns );
port(In1 : in logicvector_my;

outl out logic mv := 'U'

end component;

for all : NANDm use
entity WORK.NANDm(BEHAVIORAL);

component D_ff
generic ( propagationdelay time := 0 ns );
port (

D in : in logic_my := 'U';
Q_out : out logic mv :- 'U';
CLK : in logic_my := 'U';
Clear : in logic-mv :- 'U';
SET in logic-my :- 'U'

end component;

for all : d ff use

entity WORK.D ff(BEHAVIORAL);
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--Internal Signal Declarations

signal Yl,
Y2,
Qi,
Q2 :logic-my :- 'U';

signal Xnot,
Q2.not,
Q2not,
NANDi -output,
NAND2_output,
NAND3_-output,
NAND4_output :logic my := U';

signal NAND1_input,
NAND2_input,
NAND3_input,
CR1_input :logic-vector-my (1. downto 0) Un

signal NAND4_input :logic vector-my (2 downto 0) :="UUU";

begin

invi inverter
port map (Xin, Xnot);

inv2 inverter
port map (Q2. Q2not);

inv3 inverter
port map (Qi, Qinot);

-- Logic to derive Yl:

NANDi-input <- Qi & Q2not;

NAND1 NANDm
port map ( NAND1_input, NAND1-output )

NAND2_input <- Xnot & NAND1 output;

NAND2 :NANDm
port map ( NAND2_input, Y1 )

--LOGIC to derive Y2

NAND3_input <- Xnot & Qi;

NAND 3 :NANI~m
port map ( NAND3 input, NAND3_output )

inv4 :inverter
port map ( NAND3output, Y2 )

--LOGIC to derive Zout
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NAND4_input <- Xin & Qlnot & Q2;

NAND 4 :NANDm
port map ( NAND4_input, NAND4_output )

inv5 :inverter
port map (NAND4_output , Zout )

-- Registers

FF1 :D-ff
port map (Y1, Qi, CLOCK, CLEAR, SET )

FF2 :D-ff
port map (Y2, Q2, CLOCK, CLEAR, SET )

end STRUCTURAL2;
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AUG-01-1990 10:09:43 VHDL Report Generator PAGE 1
TESTGATE"

Vhdl Simulation Report

Report Name: TESTGATE"
Kernel Library Name: <<RMILLER.STRUCTURAL>>SD TEST

Kernel Creation Date: AUG-01-1990
Kernel Creation Time: 10:09:35

Run Identifer: 1
Run Date: AUG-01-1990
Run Time: 10:09:35

Report Control Language File: test.rcl
Report Output File : sd test.rpt

Max Time: 9223372036854775807
Max Delta: 2147483646

Report Control Language :

Simulationreport TEST is
begin
reportname is "TESTGATE";
page width is 80;
pagelength is 50;
signalformat is horizontal;

samplesignals by_transaction in ns;
--sample_signals by_event in ns;
selectsignal : Clock;
--select_signal : reset;

select_signal : instruction;
select_signal : out_1;
select_signal /uutl: Y2;
select_signal /uutl: Y1;
select_signal /uutl: Q2;
selectsignal /uutl: Q1;

end TEST;

Report Format Information

Time is in NS relative to the start of simulation
Time period for report is from 0 NS to End of Simulation
Signal values are reported by transaction ( ' I indicates no transaction
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AUG-01-1990 10:09:43 VHDL Report Generator PAGE 2

TEST-GATE"

TIME ----------------------------- SIGNAL NAMES - -----------------------------

(NS) CLOCK INSTRUCTION(2 DOWNTO 0) OUT_1 Y2 Y1 Q2 Q1

0 'U' "UUU" 'U' 'U' 'U' 'U' 'U'

+1 "100" 'x' 'x' 'x'
+2 'X' 'X'

+3 'X'

+4 '0' X

2
+1 i ' '

+2 '0' '0'

+5 '0'

+6 '0'

6
+1I '0'

8
+1 "000"

10
+1 i ' '

+2 '0' .0'

14

+1I '0'

16

+1 "000"

18
+1I ' '
+2 '0' '0'

22
+1 '0'

24

+1 "001"

+4 '1'

26

+1 I ' '

+2 '0' '1'

+6 '1'

30
+1I '0'

32

+1 "000"
+4 '1'

+5 '1'

34
+1 I 1'

+2 '1' '1'
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AUG-01-1990 10:09:43 VHDL Report Generator PAGE 3

TESTGATE"

TIME ----------------------------- SIGNAL NAMES ----------------------------

(NS) CLOCK INSTRUCTION(2 DOWNTO 0) OUT 1 Y2 YI Q2 Q1

+7 '0'

38
+1I '0'

40

+1 "000"

42

+1i ''

+2 I'1' .0

+5 '0'

46

+1I '0'

48

*1 "001"
+4 '' 'i'

50

+1 i ' '

+2 '0' 'I'

+5 '0'

+7 'i'

54
+1I '0'

56
+1 "000"

+4 'I'

+5 '1'

58

+1i ''

+2 '1' '1'
+7 '0'

62

+1I '0'

64
+1 "001"
+4 '1'

+5 '0'

66

+1I ''

+2 '0' '1'

+7 '1'

70
+1 '0'

72
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AUG-01-1990 10:09:43 VHDL Report Generator PAGE 4

TESTGATE"

TIME .----------------------------- SIGNAL NAMES-----------------------------

(NS) CLOCK INSTRUCTION(2 DOWNTO 0) OUT 1 Y2 Y1 Q2 Q1

+1 "001"

74

+1 .1.

+2 I0' 11'

78

+1i '0'

80
+1I "001"

82

+1 I ' '
+2 I0' '1'

86

+1 '0'

88
+1 "000"

+4 '1'
+5 'i'

90

+1I ''
+2 1. '1'

+7 '0'

94
+1i '0'

96

+1 "000"

98

+1 i ' '
+2 '1' '0'

+5 .0'

102

+1 '0'

104
+1i "011'

+4 '1' '1'

106

+1 '1'

+2 '1' '1'
+6 '0,

110

+1 '0'
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Appendix D: The Verification Software Environment

This appendix serves as a users manual for AFMs verification software environment which

consists of UC Berkeley's pre_verif and verif software and AFIT's b2s software. Although it is

intended as a standalone document, additional information which amplifies the contents of this

ar pendix may be found in Chapters 2, 3, 4, and 5 of the thesis. Where applicable, references will be

provided in this appendix to appropriate chapters of the thesis.

D.1 The Verification Software Environment.

Figure D.1 represents AFIT's verification software environment which performs verification of

sequential circuits which have been described in the behavioral or structural models defined in

Chapter 3 of this thesis. Verification may be performed' , twc structurally described circuits,

two behaviorally described circuits, or or. c; each. Chapter 4 describes the input file format for both

b2s and preverif. The intermediry file, verif.input, is described in Chapter 2. All three software

tools, pre-verif, verif, and b2s may be found on AFIT's VLSI sun network in the directory

/tmp_mnt/auto/project/verification

The b2s software is c ,,rently available in source and executable form on the AFIT VLSI suns. The

software preverif and verif are available in source on the AFIT VLSI suns; currently they are

executable only on a microvax.
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D.2 Software Tutorial.

For the purposes of demonstration, these instructions will step through the verification of one

behaviorally described circuit against a structurally defined circuit. These circuits are labeled with the

numbers 1 and 2 in Figure D.1. First, the behaviorally specified sequential circuit will be processed

thruugh b2s and pre-verif. Next, the structurally modeled circuit will be processed through pre-verif.

Each pre verif run will produce an input file for the verif software. Finally, verif will determine the

equivalence of the two verif.input files. Both VHDL files can be found at the end of this appendix.

D.2.1 The b2s Software.

The b2s software translates a behaviorally specified sequential circuit into a structurally

equivalent circuit. The input behavioral specification must be in the behavioral VHDL format described

in Chapter 4. Currently, b2s accepts VHDL behavioral models of only simple synchronous or

asynchronous Mealy sequential circuits. Further, although b2s does perform some source file

checking, the input VHDL source code is assumed to be syntactically and semantically correct. The

b2s software produces a structural VHDL output file formatted in the structural VHDL model

presented in Chapter 4. The b2s software is invoked from the system prompt by typing:

b2s [-options] filename

Where [-options] allows some user visibility into b2s's translation execution and filename is any

legal Unix filename. The file contains the behavioral VHDL model of the sequential circuit. The b2s

options permitted for [-options] are:

-de which causes b2s to print to stdout information regarding the sequential circuits

VHDL entity.

-da which causes b2s to print to stdout translation information regarding the sequential

circuit's architectural body.

-dt which causes b2s to print to stdout translation information regarding the sequential

circuit's transition process,

D.3



-db which causes b2s to print to stdout translation information regarding the sequential

circuits block constructs,

-dA which causes b2s to print to stdout all translation information, and,

-dT which causes b2s to print the state transition table generated from the behavioral

description.

Additionally, multiple options may be invoked by concatenation, for example:

b2s -dedT filename

causes execution of both the -de and -dT options. The b2s software puts the structurally equivalent

VHDL circuit in the file:

filename. struc

This output file name is created by appending . struc to the input file name. This new structural file is

represented by the number 3 in Figure D.1.

As a final note, if b2s encounters any difficulties translating the behavioral VHDL circuit,

carefully examine the nature of the behavioral file. Currently, b2s limits the "free-form" nature of the

VHDL which it accepts. Although the behavioral VHDL is completely analyzable and simulatable by

the VHDL software support environment, b2s is not a VHDL source code analyzed In its current form

it expects certain VHDL constructs to be formatted in a certain fashion; Chapter 4 presents these

formats for the behavioral VHDL Additionally, section D.4.1 presents an example.

D.2.2 The preverlf Software.

The preverif software takes a structurally designed sequential circuit and extracts the circuit's

complete cover and minterm Information. This information is placed in an output file named verif.input.

See Chapter 2 for further information regarding the contents of verf.input. The preverlf software is

invoked from the system prompt by typing:

pre verif [-options] filename
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Where [-options] controls pre_verif's operation and filename is the name of the input file containing

the structurally designed circuit Many [-options] are possible for the preverif software. Simply

type:

preverif

at the system prompt for a complete listing. Only two of these options are of interest here, namely

-enm and -vhdl. The first option, -enum, instructs preverif to extract the complete cover and

minterm variable information and place this information in the output file verif.input. The second

option, -vhdl, informs proverif that the input file is a sequential circuit specified using the VHDL

structural model of Chapter 3. Lacking the -vhdl option, preverif will expect the input file to be in

the UC Berkeley structural netlist format. The complete command line invocation of pre_verif using a

VHDL structural input file is:

pre verif -enum -vhdl filename

where filename is the name of the VHDL structural file and can be any legal Unix filename. The two

options, -vhdl and -enu.., are interchangeable in that:

pre verif -vhdl -enum filename

is equivalent.

For purposes of the demonstration, the preverif software is invoked twice, once for the

structural file created by the b2s software (labeled number 3 in Figure D.1) and again for the other

structural file (labeled number 2 In Figure D.1). The two files created after both runs of pre_verif are

labeled with tha number 4 in Figure D.1. One caution must be takea after each invocation of the

preverdf software. Beause preverif always places the cover and minterm variable information into a

file named venf.input, the user should change this file's name to prevent subsequent preverif

executions to delete the old verif.input file and in so doing, lose the information from previous

pre-verif runs. The verif.input file name can be easily changed at the Unix system prompt by typing:

mv verif.input filename

where filename is the new file name designated by the user.
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D.2.3 The verif Software.

The verif software performs the actual verification, or equivalence check, of the two sequential

circuits. The verif software does not create an output file but simply prints verification information to

Unix's stdout. The software is invoked from the system prompt by typing:

verif filenamel filename2

Where filenamel and filename2 are the names of the two files created by the two separate

preverif runs. If the two sequential circuits are equivalent, verf will exit with the message:

#MACHINES ARE THE SAME

If the two circuits are not equivalent, verif will exit with the message:

#MACHINES ARE DIFFERENT

Accompanying this message will be a set of vectors which are the differentiating sequence for the two

machines. For example:

#MACHINES ARE DIFFERENT
#THE DISTINGUISHING SEQUENCE IS

1010

These vectors describe the input sequence which steps through the sequential circuits starting from

the each circuits initial state. The state reached upon application of the last vector is that state which is

different than the second machine's state. The two machines may be debugged at this point by going

directly to the state transition graph for each machine and tracing through the paths via the vectors or

by applying the vectors directly to the sequential circuit's VHDL simulation.
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0.3 Summary of Verification Process

The steps involved to verify the equivalence of two sequential circuits where one circuit is

described using the behavioral VHDL model (filenamel) and the other using the structural VHDL

model (filename2), can be summarized as follows:

(1) Run b2s to translate the behavioral circuit into a structural equivalent:

b2s filenamel

(2) Run pre-verif on b2s's output file:

preverif -enum -vhdl filenamel.struc

(3) Rename the file created by preverif:

mv verif.input filenamel.verif

(4) Run pre verif on the second file:

preverif -enum -vhdl filename2

(5) Perform the verification:

verif filenamel.verif verif.input

(6) Should vedf report that the circuits are different, record the vectors which verif reports.

D.4 An Example b2s Translation

The following VHDL code describes the sequential circuit of Figure D.2. Section D.4.1

contains the behavioral VHDL code describing the circuit and Section D.4.2 contains the structural

VHDL code generated by the b2s software. This example is available in the directory:

/tmp_rmnt/auto/project/verification/b2s
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architecture SYNCHRONOUS of example is

signal PresentState, NextState : States
UnknownState;

signal Transition : Transition Resolution
Transition Conditions

BUS :- No Transition;

begin

-- synchronize the state to state transitions to the clock.
-- Note that signals on a process's sensitivity list must be

-- separated from the parenthesis by spaces!
process ( clock

begin
if (clock = 'I' and clock'event)

then PresentState <- Next-State;
end if;

end process;

-- initialize and reset capability
-- Note that signals on a process's sensitivity list must be
-- separated from the parenthesis by spaces!
process ( INITIALIZE

begin
if INITIALIZE - '1' and INITIALIZE'event then

Transition <- INITIALIZE;
else

Transition <- null;
end if;

end process;

-- the State Machine Transitions
-- Note that signals on a process's sensitivity list must be
-- separated from the parenthesis by spaces!
process ( transition

begin
case Present State is

when StateC ->
case transition is

-- Notice that not all transitions in Figure D.2

-- are enumerated here. The ones not enumerated
-- are those which are transitions back into the
-- same state. They do not need to be enumerated;
-- in their absence, b2s adds them to the

-- State Transition Table.
when zero one ->

Next State <- State B;
when one zero ->

Next State <- StateD;

-- Additionally, b2s reserves two transition names:
-- INITIALIZE and RESET. These two

-- transitions must be used to transition the
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-- circuit into it's initial state. They are
-- utilized ONLY IN THE VHDL; b2s ignores them.
when INITIALIZE =>

Next State <- State A;

when others >

end case;

when State D ->

case transition is
when zero one >

Next State <= StateC;
when one-one ->

Next State <= State B;
when one zero =>

NextState <= StateA;

when INITIALIZE ->
NextState <- StateA;

when others =>

end case;

when State B ->

case transition is
when zero zero ->

NextState <= StateD;

when one zero ->
Next State <- StateC;

when INITIALIZE >

Next State <- State A;
when others ->

end case;

when State A ->
case transition is

when zero zero >

NextState <= StateD;
when one one ->

Next State <= StateB;
when INITIALIZE ->

Next State <- StateA;
when others =>

end case;

when Unknown State ->
case transition is

when INITIALIZE =>
Next State <= State A;

when others =>

end case;

end case;
end process;

-- C State block
C: block ( Present State - StateC

signal inputs : logicvector_my ( 1 downto 0 );
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begin
-- the block signal "inputs" need not consist of all
-- input port signals of the entity. It should only consist
-- of those inputs required for the state to operate
-- properly. Leaving out extraneous input port signals
-- reduces the variable count in the generated minterms.
-- For this example, however, both X2 and Xl are required.
inputs <- X2 & Xl;
process (GUARD, Inputs
begin
if GUARD then

case inputs is
when "01" =>

transition <- zero-one;

when "10" ->

transition <- onezero;

-- As mentioned in the transition process, not all
-- transitions are enumerated. If they were, the
-- following lines of code, which have been commented
-- out would be required. Implied their absence, b2s
-- inserts them into the state transition table.
--when "00"
-- transition <- zero zero;
--when Ill"
-- transition <- one-one;

SA.en others ->
-- transition <= No Transition;

end case;
else

transition <= null;
end if;
end process;

end block C;

-- D State block
D: block ( Present State - State D

signal inputs : logicvector_my ( 1 downto 0 );
begin

inputs <- X2 & Xl;
process ( GUARD, Inputs
begin
if GUARD then

case inputs is
when "10" ->

transition <- onezero;

when "11" ->
transition <- one-one;
out_1 <- '1';

when "01" ->

transition <- zero one;
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when others ->
transition <- NoTransition;

end case;
else

transition <= null;
out 1 <= null;

end if;
end process;

end block D;

-- B State block
B: block ( Present State = StateB

signal inputs : logic vector mv ( 1 downto 0 );
begin

inputs <- X2 & Xl;
process (GUARD, Inputs
begin
if GUARD then

case inputs is
when "00" =>

transition <= zero zero;
out_2 <= 'I';

when "10" =>
transition <= onezero;

when others ->

transition <- NoTransition;

end case;
else

transition <- null;
out 2 <- null;

end if;
end process;

end block B;

-- A State block
A: block ( Present State = StateA

signal inputs : logic vector mv ( 1 downto 0 );
begin

inputs <- X2 & Xl;
process (GUARD, Inputs

begin
if GUARD then

case inputs is
when "00" ->

transition <- zerozero;

when "II" ->
transition <- one-one;

when others ->
transition <- NoTransition;
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end case;
else

transition <= null;

end if;
end process;

end block A;

end SYNCHRONOUS;
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D.4.2 b2s's Structural Translation

The b2s software produces the following structural equivalent of the behavioral description of

section D.4.1.

-- Structural VHDL created by the b2s software --

-- Captain Rick Miller
-- AFIT/ENG

-- Copyright (c) 9 November 1990. --

use work. examplepkg. all;

use work.BASICDEFS.all;

entity example is

port(
Xl : in logic my 'U';
X2 : in logic-my 'U';
out 1 : out logic my 'U';
out_2 : out logicmv 'U';
INITIALIZE : in logic_mv;
CLOCK : in logic mv

end example;

architecture STRUCTURAL of example is

--- Component Declarations

component inverter
generic( propagationdelay time := 0 ns );
port

inl : in logic my : 'U';

outl : out logic_my : 'U'

end component;

for all : inverter use
entity WORK.inverter(BEHAVIORAL);

component ANDm
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generic( propagationdelay : time := 0 ns );
port (

Inl : in logic_vectormy;
outl : out logic- := 'U'

end component;

for all : ANDm use

entity WORK.ANDm(BEHAVIORAL);

component On'
generic( propaga ion_delay : time := 0 ns );

port (
INl : in logic_vector my;
outl : out logic_my := 'U'

end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL);

component D ff
generic( propagation_delay : time := 0 ns );
port (

D in in logic_mv :- 'U';
Q out : out logic-mv := 'U';

CLK in logic_my 'U';
Clear in logic mv 'U';
SET in logic_my := 'U'

end component;

for all : D ff use
entity WORK.Dff(BEHAVIORAL);

--- Internal Signal Declarations

signal Qinit : logicvector-mv ( 1 downto 0 );

signal out 1 in0 : logic_vector_my ( 3 downto 0 );

signal out 2 inO : logic_vector_mv ( 3 downto 0 );

signal Ylin7 logic_vector mv ( 3 downto 0 ;
signal Ylin6 logic_vector_mv ( 3 downto 0 ;

signal Ylin5 logic_vector mv ( 3 downto 0 ;
signal Ylin4 logic_vector mv ( 3 downto 0 ;

signal Ylin3 logic_vector _w- ( 3 downto 0 ;

signal Ylin2 logic_vector_mv ( 3 downto 0 ;

signal Ylinl logic_vector_mv ( 3 downto 0 ;

signal YlinO logic_vector_my ( 3 downto 0 ;
signal ORYlin logicvectormv ( 7 downto 0 );
signal YOin8 logic_vector_mv ( 3 downto 0 );

signal YOin7 logic_vector_my ( 3 downto 0 );

signal YOin6 logic_vector_my ( 3 downto 0 );
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signal YO -in5 logic-vector-my ( 3 downto 0 )
signal YO_in4 logic-vector-my ( 3 downto 0 )
signal YO_in3 logic vector my ( 3 downto 0 )
signal YO in2 :logic vector mv ( 3 downto 0 )
signal YO-iml logic_vector-my ( 3 downto 0 )
signal Y0_mO0 logic_vector -my ( 3 downto 0 )
--7'al OR Y0i~n logic-vector-my 8 downto 0 )
signal QO_-NOT logic-my;
signal QO :logic-my;
signal YO0 logic -my;
signal Qi_NOT :logic -my;
signal Ql : logic-my;
signal Y1 logic my;
signal X2_NOT :logic -my;
signal Xl_NOT :logi1c my;

begin

gO :inverter
port map( Xl, Xl_NOT )

gi inverter
port map( X2, X2_NOT )

g2 inverter
port map( Ql, Ql_NOT )

g3 inverter
port map( 00, 00_NOT )

-Following combinational logic generates flip-flop input (s).

-The following combo logic generates: YO

Y0 mO0 <- X2 & Xl & 01 & QO;

g4 :ANDm
port map( YO0_mO YO Y00

YO-iml <- X2_NOT &Xl_NOT & Ql & QO;

g5 : ANDm
port map( Y0 mnl ,Y0_1 )

YO in2 <- X2 & Xl &Ql_NOT & QO;

g6 : ANDm
port map( YO_in2 ,Y0_2 )

YO in3 <- X2_NOT &Xl & 01_NOT & QO;

g7 :ANDm
port map( Y0_in3 ,Y0_3 )

YO in4 <- X2_NOT &XI & Qi & QO;

g8 : ANDm
port map( YO in4 ,Y0_4 )
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Y0 in5 <- X2_NOT &Xl & Ql & QONOT;

g9 ANDm
port map( YO in5 ,YO_5 )

YO in6 <- X2 & X1 Qi & QONOT;

g1O ANDm
port map( YO-in6 ,YQ_6 )

YO in7 <= X2 & Xl NOT & QlNOT & QO;

gll ANDm
port map( YO-in7 , YO_7 )

YO in8 <- X2 & X1 & QiNOT & QONOT;

g12 :ANDm

port map( YO-in8 , YO_8 )

OR -YOin <= YO_0 & YO_1 &YO_2 & YO_3 &YO_4 & YO_5 &YO_6 & YO 7 & YO 8;
g13 :ORm

port map( ORYOin , YO )

-- The following combo logic generates: Y1

Yl mnO <- X2 & Xl & Ql & QO;

g14 ANDm.
port map( Y1_mO , Y1_0 )

Yl mnl <- X2_NOT &Xl NOT & Q1 & 00;

g15 :ANDm
port mnap( Y1_mnl ,Yl_1 )

Yl in2 <- X2_NOT & XlNOT & Q1 & QO NOT;

g16 :ANDm
port map( Yl in2 , Y1_2 )

Y1 in3 <- X2 & XlNOT & Qi & QO;

g17 : ANDm

port map( Yl-in3 , Y1_3 )

Y1 iri4 <- X2 NOT & X1 & Qi & 00_NOT;

g18 : ANDm

port map( Yl in4 , Yl_4 )

Y1 in5 <- X2_NOT & XlNOT & Q1_NOT & 00;

g19 :ANDm
port map( Yl in5 , Y1-5 )

Yl in6 <- X2 & XlNOT & 01_NOT & QO,
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g20 ANDm
port map( Y1_in6 , Y1_6 )

Y1 in7 <- X2_NOT & Xl_NOT &Qi_NOT & QO_NOT;

g2J. ANDm

port map( Y1_in7 , Y1_7 )

OR -Ylin <-Y1_0 & Y1 1 Y1_2 & Y1_3 & Y1_4 & Y1_5 & Y1_6 & Y1_7;
g22 :ORm

port map( OR Ylin , Y1 )

-Following combinational logic generates circuit output (s).

-The following combo logic generates: out 2

out_2_mnO <- 01_NOT & 00 & X2_NOT & XlNOT;

g23 :ANDm
port map( out_2_mnO , out_2 )

-- The following combo logic generates: out 1

out_1_mnO <- Qi & QO_NOT & X2 & Xl;

g24 :ANDm
port map( out_1_mnO , out_1 )

-- Flip-Flops

FF1 :D_ff
port map ( Y1, Qi, CLOCK, CLEAR, SET )

FF0 D_ff
port map ( YO, 00, CLOCK, CLEAR, SET )

-- Initialize/Reset control

Qinit <- 001 after lns,
"ZZ" after 5ns;

00 <- Qinit (0);
Qi <- Qinit (0);

end STRUCTURAL;
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D.4.4 An Exercise

As an example of the verification process, perform the following exercise. This exercise

performs a verification of the sequential circuit 'example," which is described via the behavioral VHDL

model against another sequential circuit "hand-made," which is described via the structural VHDL

model. The structural VHDL description of handmade follows the exercise. All instructions are

performed at the Unix prompt.

(1) type: b2s example.vhd

This instructs b2s to translate the VHDL behavioral circuit into a structural equivalent.

(2) type: preverif -enum -vhdl example.vhd.struc

This instructs preverif to process the structural description in example.vhd.struc and

place its output into verif.input.

(3) type: mv verif.input example.verif

(4) type: preverif -enum -vhdl handmade.vhd

This instructs preverff to process the structural description in handmade.vhd and

place its output into vedf.input.

(5) type: verif example.verif verif.input

When vedf execution is complete, the following should be displayed on the screen:

# Machine 1 inputs 2 outputs 2 latches 2
# Machine 2 inputs 2 outputs 2 latches 2
#Time to read in covers : 1.300000e-Ol secs
#MACHINES ARE THE SAME
Number of states - 4
Number of edges - 15
Number of entries - 7
Number of save difs - 0
#Time for verification : 7.0000OOe-02 secs
#Total user time : 2.000000e-01 secs
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The handmade sequential circuit is described as:

use work.example pkg.all;

use work.BASICDEFS.all;

entity example is

port(
X1 : in logic my 'U';
X2 : in logicmy 'U';
out : out logic mv := 'U';
Out_2 : out logic my := 'U';
INITIALIZE : in logic mv;
CLOCK : in logic_mv

end example;

architecture Hand made of example is

component inverter
generic( propagation-delay : time := 0 ns );
port (

inl : in logic_mv := 'U';
out1 : out logic_mv := 'U'

end component;

for all : inverter use
entity WORK.inverter(BEHAVIORAL);

component ANDm
generic( propagationdelay : time := 0 ns );
port (

Inl : in logicvector-my;
outl : out logic_mv :- 'U'

end component;

for all : ANDm use
entity WORK.ANDm(BEHAVIORAL);

component ORm
generic( propagation-delay : time :- 0 ns );
port (

Inl in logicvector_my;
outl out logic_my :- 'U'

end component;
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for all : ORm use

entity WORK.ORm(BEHAVIORAL);

component D ff
generic( propagation_delay : time := 0 ns );
port (

D in in logic_my := 'U';
Q_out : out logicmv := 'U';

CLK in logic my := 'U';
Clear in logic_my := 'U';

SET in logic-mv := 'U'

end component;

for all : D ff use
entity WORK.Dff(BEHAVIORAL);

signal XlNOT, X2_NOT, Q0_NOT, QlNOT : logic-my :- 'U';
signal g4in : logic_vector_mv ( 1 downto 0 );
signal g4out : logic-my :- 'U';
signal g5in : logic_vector mv ( 1 downto 0 );
signal g5out : logic-my :=- 'U';
signal g6in : logic_vector_mv ( 2 downto 0 );
signal g6out : logic-my :- 'U';
signal g7in : logic_vector_my ( 2 downto 0 );
signal g7out : logic-my := 'U';

signal g8in : logic_vector_mv ( 2 downto 0 );
signal g8out : logic-my := 'U';
signal g9in : logicvector_my ( 4 downto 0 );

signal glOin : logic_vector_my ( 1 downto 0 );
signal gl0out : logic-my :- 'U';
signal gllin : logic vector my ( 1 downto 0 );
signal gllout : logic my :- 'U';
signal gl2in : logicvector_mv ( 2 downto 0 );
signal gl2out : logic my :- 'U';

signal gl3in : logicvector_my ( 2 downto 0 );
signal gl3out : logic my :- 'U';
signal gl4in : logicvector_mv ( 3 downto 0 );

signal gl5in : logic vector-mv ( 3 downto 0 );
signal gl6in : logicvector_my ( 3 downto 0 );

begin

gO : inverter
port map( Xl, XlNOT );

gl : inverter

port map( X2, X2_NOT );

g2 : inverter

port map( Ql, QlNOT );

g3 : inverter
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port map( QO, 00_NOT )

-- The following generates YO:

g4in <- Xl & QO;

g4 :ANDm
port map ( g4in , g4out )

g5in <- Xl & Qi;

g5 :ANDm
port map ( g5in , g5out )

g~in <- X2_NOT & QO & Qi;

g6 :ANDm
port map ( g~in , g6out )

g7in <- X1 & X2 & Qi NOT;

g7 :ANDm
port map ( g7in , g7out )

g8in <= X2 & QO & 01_NOT;

g8 :ANDm
port map ( g8in , g8out )

g9in <- g4out & g5out & g6out &g7out & g8out;

g9 :ORm
port map ( g9in, YO )

-- The following generates Yl:

glOin <- X2_NOT & XlNOT;

glO ANDm
port map ( glOin , gl~out )

gumi <- Xl NOT & QO;

gil ANDm
port map ( gumi , glout )

gl2in <- X2_NOT & QONOT & Q1;

g12 ANDm
port map ( gl2in , gl2out )

gl3in <- X2 & QO & Ql;

g13 ANDm
port map ( gl3in , gl3out )

gl4in <- gl~out & glout & gl2out & gl3out;
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g14 :ORm
port map ( gl4in, Y1 )

-- The following generates OUT 1:

gl5in <- Xl & X2 & Qi & QO_NOT;

g15 : ANDm
port map ( gl5in , out_1 )

-- The following generates OUT 2:

gl6in <- Xl_NOT & X2_NOT & Ql_NOT & Q0;

g16 :AN~m
port map ( gl6in , out_2 )

-- The flip-flops:

FF1 : D_ff
port map ( Y1, Qi, CLOCK, CLEAR, SET )

FF0 : D ff
port map ( YO, QO, CLOCK, CLEAR, SET )

-- Initialize/Reset control

Qinit <- O000 after ins,
UZZU after 5ns;

QO <- Qinit (0);
Qi <- Qinit (0);

end Hand-made;
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Appendix E. Behavioral Design Example

This appendix contains examples of VHDL code segments representing various portions of a

tm-bus module implemented using the behavioral model proposed in Chapter 3. These code

segments represent implementations of a skeletal tm-bus module, the tm-bus transition process, and

two representative tm-bus module states. They may be acquired by contacting:

Major K. Kanzald

AFIT/ENG

Department of Electrical and Computer Science

School of Engineering

Air Force Institute of Technology

Wright-Patterson AFB, Ohio, 45433
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Appendix F. Structural Design Examples

This appendix contains examples of sequential circuits implemented using the structural

model proposed in Chapter 3. See Chapter 5 for details concerning the functionality of these

sequential circuits.

Sequence Detector (AND-OR version) E.2

UC Berkeley Format Equivalent E.5

Sequence Detector (NAND version) E.6

UC Berkeley Format Equivalent E.9

Sequence Detector

(alternate state assignment version) E.10

UC Berkeley Format Equivalent E. 13

Sequence Detector Test Bench E. 14

VHDL Simulation Report E. 16

Eight Instruction CPU Controller (correct) E.22

Eight Instruction CPU Controller

(incorrect JUMPZ combinational logic) E. 31

CPU Controller Test Bench E.32

CPU Controller VHDL Simulation Report E.35

CPU Verification lime Required Report E.62

CPU VHDL Time Required Report E.64
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use WORK.basicdefs.all;
use work. SD_package.all;
entity SequenceDetector is

-- generic ( );

port (
Xin : in logic_my 'U';
CLOCK : in logicmy 'U';
Zout : out logic mv 'U';
INITIALIZE : in logicmy 'U'

end SequenceDetector;

architecture STRUCTURALl of Sequence-Detector is

component inverter
genprir'( propagationdelay time := 0 ns );
port (

inl : in logic_mv 'U';

out1 : out logic mv 'U'

end component;

for all : inverter use
entity WORK.inverter(BEHAVIORAL);

component ANDm
generic( propagation-delay : time := 0 ns );
port(

Inl : in logicvector_my;
outi : out logic my :- 'U'

end component;

for all : ANDm use

entity WORK.ANDm(BEHAVIORAL);

component ORm
generic( propagationdelay : time := 0 ns );
port(

Inl : in logicvector_mv;
outl : out logic-my :- 'U'

end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL);

component D ff

generic ( propagationdelay time := 0 ns );
port (

D in : in logicmy :- 'U';
Q_out : out logic_my :- 'U';

CLK : in logic_my :- 'U';
Clear : in logic_my : 'U';

SET : in logic_my :- 'U'
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end component;

for all :d-ff use
entity WORK.D-ff(BEHAVIORAL);

--Internal Signal Declarations

signal Yl,
Y2,
Q1,
Q2 :logic-my :- 'U';

signal Xnot,
Qinot,
Q2not,
ANDl output :logic-my : 'U';

signal AND1_input,
A1ND2_!nput,
ORl input,

Qinit :logic-,vector-my (1 downto 0) U"

signal AND3_input :logic -vector -my (2 downto 0)
MUUIJ";

begin

gl inverter
port map (Q2, Q2not);

g2 :inverter
port map (Xin, Xnot);

g3 :inverter
port map (Qi, Qlnot);

-- Logic to derive Yl:

ANDi input <- Q! & Q2not;

g4 :ANDm.
port map ( AND1_input, ANDi_output )

ORi_input <- Xin & ANDi_output;

g5 :ORm
port map ( ORi_input, Y1 )

- -- LOGIC to derive Y2

AND2_input <- Xnot & Qi

g6 :ANI~m
port map ( AND2_input, Y2 )

--LOGIC to derive Zout

AND3_input <= Xin & Qinot & Q2;

F.3



g7 :ANDm
port map ( AND3_input, Zout )

--Registers

FF1 D-ff
port map ( Yl, Qi, CLOCK, CLEAR, SET )

FF2 D ff
port map ( Y2, Q2, CLOCK, CLEAR, SET )

Qinit <- "00" after ins,
"ZZ" after 2Ons;
ql <- Qinit (0);
q2 <= Qinit (1);

end STRUCTURALl;
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name Sequence Detectori
i xin
o Zout

gJ. not q2 ; q2not

g2 not xin ; xnot

g3 not qi ; qlnot

#--Logic to derive Yl:

g4 and qJ. q2not ; ANDlout

g5 or xin ANDlout ; YJ.

#*- LOGIC to derive Y2

g6 and xnot qi ; Y2

# - LOC.;C to derive zout

g7 and xin qinot q2 ; Zout

# - Registers

PS qJ.
ns Yl

ps q2
ns Y2

I
00
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Use WORK.basicdefs.all;

entity SequenceDetector is

-- generic ()

port(

Xin in logic my gut';
CLOCK in logic my '= U'

Zout out logic my 'U' ;

INITIALIZE in logic my 'U'

end Sequence-Detector;

architecture STRUCTURAL2 of SequenceDetector is

-omponent inverter

generic( otopagation-delay :time :=0 ns )

port(
inl in logic mv 'U';

outi out logic-mv TUT

efld component;

for all :inverter use

entity WORK.inverter (BEHIAVIORAL);

--mponent NANDm

generic( propagation delay :time : 0 ns )

port(

Inl in logic -vector my;

oli.t out logic-m my 'U'

endi c'mponeflt;

for all :NANDm use

entity WORK.NANDm(SEHAVIORAL);

-- mprnent OPM

g4eneric( propagation delay :time : 0 ns )

port,
In 1 in logic -vector my;
olitl o -ut logic my : 'Ii

g~ rd component.;

for all :O()m usqe
ent it y WfOPK ()Pm (nHHAV1ORPAl,)

-,tnwi norit 1) f
*JeFloI p. ( r pa);'4At i , n delIa Y t ims- 0 ri

1," f
I i in '-jI my Ti

(j )~ 't Ir. my T 'I'

(',KcIr in niv - '

C( Iar in1 T.4 v '
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SET in logic my out

end component;

for all :d if use
entity WORK.D-ff(BEHAVIORAL);

--Internal Signal Declarations

signal Y1,

Y2,
Q1,
Q2 :logic-my 'U';

signal Xnot,
Qlnot,
Q2not,
NAND1_output,
N4AND2_output,
NAND3_output,
NAND4_output :logic my 'U';

signal NANDi_input,
NAND2_input,
NAND3_input,
ORlinput,
Qinit :logic-vector_ -tv (1 downto 0) U"

signal NAND4 input :logic vector_my (2 downto 0) "UUUn;

begin

gl inverter
port map (Xin, Xnot);

g2 inverter

port map (Q2, Q2not);

q3 inverter
port map (Ql, Qlnot);

-- Logic to derive Yl:

NANDI-input <- Q1 & Q2not;

g4 :NANIm
port map ( NANDi-input, NANDi-output )

NAND2_input <- Xnot & NANDloutput;

g5 :NANIm
port map ( NAND2 input, Yl )

--LOGIC to derive Y2

NAND3_input <- Xnot & Ql;

9j6 :NANDm
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port map ( NAND3_input, NAND3_output )

g7 :inverter
port map ( NAND3_output, Y2 )

--LOGIC to derive Zout

NAND4_input <- Xin & Qinot & Q2;

g8 NANDm
port map ( NAND4_input, NAND4_output )

g9 inverter

port map ( NAND4_output , Zout )

--Registers

FF1 :D-ff
port map ( Y1, Qi, CLOCK, CLEAR, SET )

FF2 :D-ff
port map ( Y2, Q2, CLOCK, CLEAR, SET )

-The following specifies the initial state vector of the register:

Qinit <- 000" after ins,
wZZ" after 2Ons;
ql <- Qinit (0);
q2 <- Qinit (1);

end STRUCTURAL2;
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name SequenceDetector
i Xin
o Zout

gi not Xin k not

g2 not Q2 ;Q2not

g3 not Qi Qinot

#--Logic to derive Y1:

g4 nand Ql Q2not ; NANDI._output

g5 nand Xnot NANDi-output ; Y1

# - LOGIC to derive Y2

g6 nand Xnot Qi ; NAND3 output

g7 not NAND3_output ; Y2

# - LOGIC to derive Zout

g8 nand Xin Qinot Q2 ; NAND4 output

g9 not NAND4_output ; Zout

# - Registers

PS QJ.
ns Yl

ps Q2
ns Y2

I
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use WORK.basicdefs.all;

entity Sequence-Detector is

port (
Xin : in logic_mvy = 'U';

CLOCK : in logic my := 'U';
Zout : out logicm- : 'U';
INITIALIZE : in logicmv 'U'

end SequenceDetector;

architecture STRUCTURAL3 of Sequence Detector is

component inverter
generic( propagationdelay : time := 0 ns );
port (

inl : in logic_my 'U';
outl : out logic_my := 'U'

end component;

for all : inverter use
entity WORK.inverter(BEHAVIORAL);

component ANDm
generic( propagationdelay : time := 0 ns );
port(

Inl in logicvector_my;
outl out logicmy := 'U'

end component;

for all : ANDm use
entity WORK.ANDm(BEHAVIORAL);

component ORm
generic( propagationdelay : time := 0 ns );
port(

Inl in logic vector my;
out : out logic my :- 'U'

end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL);

component D ff
generic ( propagationdelay : time := 0 ns );
port (

D in in logic_mv :- 'U';

Q out out logic my :- 'U';
CLK in logic_my :- 'U';
Clear in logic_mv :- 'U';
SET in logic my :- 'U'

end component;
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for all :d-ff use
entity WORK.D-ff(BEHAVIORAL);

--Internal Signal Declarations

signal Yl,
Y2,
Qi,
Q2 :logic-mv:-X;

signal Xnot,
Qinot,
Q2not,
ANflloutput,
ORl-output logic my := XI;

signal ANDi input,
AND2_input,
ORi_input,
Qimit :logic-vector-my (1 downto 0) "XX";

signal AND3 input :logic vector my (2 downto 0)
* = "XXX";-

begin

-- g: inverter
-- port map (Q2, Q2not);

g2 inverter
port map (Xin, Xnot);

g3 inverter
port map (Qi, Qinot);

--LOGIC to derive Yl
--- where Y2 -xnot and ( qi or q2

ORI-input <- Q1 & Q2;

g4 ORxn
port map (ORi input, OR1_output )

AND2_input <- Xnot & ORl-output;

g5 :ANDm
port map ( AND2_input, Y1 )

-- Logic to derive Yl
--- where Y2 - xnot and qinot

AND_input <- Xnot & Qinot;

g6 :ANDm
port map ( ANDI input, Y2 )
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--LOGIC to derive Zout

AND3_input <- Xin & Qi & Q2;

g7 :ANDm
port map ( AND3_input, Zout )

-- Registers

FF1 :D ff
port map ( Yl, Ql, CLOCK, CLEAR, SET )

FF2 :D-ff
port map ( Y2, Q2, CLOCK, CLEAR, SET )

when INITIALIZE select
Qinit <- "01" when '1',
Qinit <- "ZZ" when others;

end STRUCTURAL3;
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name Sequence-Detector
i Xin
o Zout

gi not Q2 ; Q2not

g2 not Xin ; Xnot

g3 not Qi ; Qinot

#* - LOGIC to derive Y2.
#* - where Y2 =xnot and (qi or q2

g4 or Ql Q2 ; ORi_output

g5 and Xnot ORi output ; Y1

# - Logic to derive Yl
# - where Y2 =xnot and qinot

g6 and Xnot Qinot ; Y2

# - LOGIC to derive Zout

g7 and Xin Qi Q2 ;Zout

ps Qi
ns Y1

ps Q2
ns Y2

I
01
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entity TEST BENCH is
end TESTBENCH;

use work. BASICDEFS.all;
--use WORK.SD Package.all;
use STD.SIMULATOR STANDARD.all;
use STD.TEXTIO.all;

architecture SD test of TESTBENCH is

component SequenceDetector

port (
Xin in logic_mv 'U';
CLOCK in logic_mv 'U';
Zout out logic_my :- 'U';
Clear in logicnvy 'U';
Set in logic_my 'U';

end component;

for UUT1 Sequence-Detector use
entity work.SequenceDetector(Structurall);

for UUT2 SequenceDetector use
entity WORK.SequenceDetector(structural2);

for UUT3 Sequence-Detector use
entity WORK.SequenceDetector(structural3);

signal instruction logic vector mv (2 downto 0)
:= "UUU";

alias input_string logic mv is instruction(0);
alias RESET logic mv is instruction(l);
alias CLEAR logic mv is instruction(2);

signal CLOCK logic my;
signal OUT_1,

OUT_2,
OUT_3 logic my;

begin

process
file INSTRUCTIONS TEXT is in "Input_String";
variable L : Line;
variable machine code : bit vector (2 downto 0);

begin
readline(INSTRUCTIONS, L);

if ENDFILE(INSTRUCTIONS) then terminate; if;
read(L, machinecode);

case machine code is
when "000" -> instruction <- "000";
when "001" -> instruction <- "001";
when "010" -> instruction <- "010";
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when "011" -> instruction <= "011";
when "100" > instruction <= "100";
when "101" => instruction <= "101";
when "110" => instruction <= "110";

when "111" => instruction <- "111";
end case;

wait for 8ns;
end process;

process
begin

set maximums(10000,100);
tracing-on;
wait for 500ns;

terminate;
end process;

make Clock : process
begin

wait for 2ns;
CLOCK <- '1''

wait for 4ns;
CLOCK <- '0';

wait for 2ns;
end process makeClock;

UUT1 : SequenceDetector

port map (input_string, CLOCK, OUT_1, RESET, CLEAR);

UUT2 : SequenceDetector
port map (input_string, CLOCK, OUT_2, RESET, CLEAR);

UUT3 : Sequence Detector
port map (input_string, CLOCK, OUT_3, RESET, CLEAR);

end SDtest;
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use work.BASICDEFS.all;
use work.CPU_packae.all;

entity CPUCONTROLLER1 is
-- generic ();

port( INSTR2 in logicmv;
INSTRI in logic_my;
INSTRO in logic mv;
CLOCK in logic_my;
RESET in logic_my
ZEROFLAG in logic_mv;
Control-bus out logic vector mv bus (12 downto 0)

= "XXXXXXXXXXXXX";

INITIALIZE in logic-my

end;

architecture STRUCTURAL of CPU CONTROLLER1 is

component inverter
generic( propagation_delay : time := 0 ns );
port (

inl in logic_my 'U';

outl out logic-my := 'U'

end component;

for all : inverter use
entity WORK.inverter(BEHAVIORAL);

component ANDm
generic( propagationdelay : time := 0 ns );
port(Inl : in logic vector-my;

outl : out logic_my := 'U'

end component;

for all : ANDm use
entity WORK.ANDm(BEHAVIORAL);

component ORm
generic( propagationdelay : time := 0 ns );
port(Inl : in logicvector_my;

outl : out logic_my :- 'U'

end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL);

component D ff

generic ( propagation_delay : time := 0 ns );
port (

D in in logic my := 'U';

Q out out logic my := 'U';

CLK in logic_my :- 'U';
Clear in logic my := 'U';
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SET in logic-my gut

end component;

for all :d-ff use
entity WORK.D-ff(BEHAVIORAL);

--Internal Signal Declarations

signal INSTR2not, INSTRlnot,
INSTROnot, ZEROFLAGnot :logic-my : 'U';

signal YO, Y1, Y2, Y3, Y4, Y5, Y6,
Y7, Y8, Y9, Yl0, Yll, Y12, YRO, YIO logic my 'U';

signal QO, Qi, Q2, Q3, Q4, Q5, Q6,
Q7, Q8, Q9, Q10, Qil, Q12,
QRO, QIQ WiredOR logic-my : 'U';

signal QOnot, Qlnot, Q2not, Q3not, Q4not, Q5not, Q6not,
Q7not, Q8not, Q9not, Qi0not, Qilnot, Ql2not,
QROnot, QIOnot :logic-my : 'U';

signal ANDyrO :logic-my-vector(l downto 0) : U"

signal ANDload, ANDstore, ANDadd, ANDand,
ANDjump, ANDjunpz,, ANDcomp,,
ANDrshift, :logic-vector-mv(2 downto 0) :="UUUn;

signal ANDy2, ANDy3, ORy3b, ANDy4, ANDy5,
ANDyiO, ORyiO, ANDy7, ANDy8a, ORy8,
ANDy9, ANDyl~b, ANDyl2, ANDyiO,
ORyiO, ANDyrO :logic-vector-mv(1 downto 0) :- "tJU"

signal ANDyG, ANDyl, ORy3a, ANDy6, ANDy8b, ANDyi~a,
ANDyll, ORyrO :logic-vector-mv(2 downto 0) :="UUU";

signal ORy7 :logic-vector-mv(3 downto 0) :="UUUU";

signal ORY10O logic_vector-mv(7 downto 0) :="UUUUUUUU";

signal CLEAR, SET :logic-my :- '0';

begin

gl: inverter
port map ( QO, QOnot )

g2: inverter
port map ( Q1, Qinot )

g3: inverter
port map ( Q2, Q2noL )

g4: inverter
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port map ( Q3, Q3not )

g5: inverter
port map ( Q4, Q4not )

g6: inverter
port map ( Q5, Q5not )

g7: inverter
port map ( Q6, Q6not )

g8: inverter
port map ( Q7, Q7not )

g9: inverter
port map ( Q8, Q8not )

glO: inverter
port map ( 09, Q9not )

gil: inverter
port map ( Q10, Q10not )

g12: inverter
port map ( Qil, Qllnot )

g13: inverter
port map ( Q12, Ql2not )

g14: inverter
port map ( QRO, QROnot )

g15: inverter
port map ( Q10, QIOnot )

g16: inverter
port map (INSTR2, INSTR2not )

g17: inverter
port map (INSTR1, INSTRlnot )

g18: inverter
port map (INSTRO, INSTROnot )

gZFnot: inverter
port map ( ZEROFLAG, ZEROFLAGnot);

-- Following code decodes instructions

-logic to decode LOAD instruction
-LOAD - INSTR2not and INSTRlnot and INSTROnot;

ANDload <- INSTR2not & INSTRlnot & INSTROnot;

gLOAD: ANDm
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port map ( ANDload , LOAD );

-logic to decode STORE instruction
-STORE - INSTR2not and INSTRinot and INSTRO;

ANflstore <- INSTR2not & INSTRInot & INSTRO;

gSTORE: ANDm
port map ( ANDstore, STORE )

-logic to decode A.DD instruction
-ADD - INSTR2not and INSTRi and INSTROnot;

ANDadd <= INSTR2not & INSTRi & INSTROnot;

gADD: ANDm
port map( ANDadd, ADD);

-logic to decode AND instruction
-AND - INSTR2not and INSTRI and INSTRO;

ANDand <- INSTR2not & INSTRI & INSTRO;

gAND: ANDm
port map( ANDand, AND);

-logic to decode JUMP instruction
-JUMP - INSTR2 and INSTRinot and INSTROnot;

ANDjump <- INSTR2 & INSTRInot & INSTROnot;

gJUL? :ANDm
port map( ANDjunp, JUMP )

-- gic to decode JUMPZ instruction
-- "rMZ - INSTR2 and INSTRinot and INSTRO;

ANDjuxnpz <- INSTR2 & INSTRlnot & INSTRO;

gJU1IPZ :ANDm
port map( ANfljurnp, JUMPZ )

-- ogic to decode COMP instruction
-- OMP - INSTR2 and INSTRlnot and INSTROnot;

ANDcomp <- INSTR2 & INSTR1 & INSTROnot;

gCOk,*': ANDm
port map( ANDcomp, COMP )

-- gic to decode RSHIFT instruction
-RSHIFT = INSTR2 and INSTRinot and INSTROnot;

ANDrshift <- INSTR2 & INSTR1 & INSTRO;

gRSHIFT: ANDm
port mnap( ANDrshift, RSHIFT )
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-- Following code derives Next states

-Logic to derive YO
-YO - q3 and qRO and Qnot and ADD

ANDyO <- Q3 & QRO & A.DD;

g19: ANDm
port map ( ANDyO, YO )

-Logic to derive Y1
-Y1 - Q3 and QRO and AND

ANDyl <- Q3 & QO & AND;

g20: ANDm
port map ( ANDyl, Y1 )

-Logic to derive Y2
-Y2 - Qil and COMP

ANDy2 <- Qil & COMP;

g2l: ANDm
port map ( ANDy2, Y2 )

-Logic to derive Y3
-- Y3 - [ (LOAD or AJDD or AND) and q7I or

-- [qiG]

ORy3a <= LOAD & ADD & AND;

g2l: ORm
port map (ORy3a, ORy3aout);

ANDy3 <- Q7 & ORy3aout;

g22: ANDm
port map( ANDy3, ANDy3out);

ORy3b <= Q10 6 ANDy3out;

g23: ORxn
port map (ORy3b, Y3);

-Logic to derive Y4
-Y4 - q5 and STORE

ANDy4 <- Q5 & STORE;

g24: ANDm
port map (ANDy4, Y4);

-logic to derive Y5
-Y5 = q7 and STORE

F.26



ANDy5 <- Q7 & STORE;

g25: ANDm
port map( ANDy5, Y5 );

-- logic to derive YIO

-- YIO - q3 or (q4 and STORE)

ANDyiO <- Q4 & STORE;

g26: ANDm
port map ( ANDyiO, ANDyi0out);

ORyiO <- ANDyi0out & q3;

g27: ORm
port map( ORyiO, YIO);

-- Logic to derive Y6

-- Y6 - q3 and qRO and LOAD

ANDy6 <- Q3 & QRO & LOAD;

g28: ANDm
port map( ANDy6, Y6 );

-- Logic to derive Y7

-- Y7 - (load or store or add or and) and qll

ORy7 <- LOAD & STORE & ADD & AND;

g29: ORm
port map ( ORy7, ORy7out);

ANDy7 <- ORy7out & QIl;

g30: ANDm
port map ( ANDy7, Y7);

-- Logic to derive Y8

-- Y8 - (qll and JUMP) or (qll and JUMPZ and ZERO FLAGnot)

ANDy8a <- Q1 & JUMP;
ANDy8b <- QI1 & JUMPZ & ZERO FLAGnot;
ORy8 <- ANDy8aout & ANDy8bout;

g31: ANDm
port map ( ANDy8a, ANDy8aout );

g32: ANDm
port map ( ANDy8b, ANDy8bout );

g33: ORm
port map ( ORy8, Y8 );

-- Logic to derive Y9
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-- Y9 - q3 & Qnot

ANDy9 <- Q3 & QIOnot;

g34: ANDM
port map ( ANDy9, Y9 )

-Logic to derive Y10

-- ylO - (jumpZ and Zero_-Flagnot and Q11) or

-- q6 or qO or qi or (q4 and qIO) or q12 or q3 or q8

ANDyi0a <- JUMPZ & ZEROFLAGnot & Qil;

ANDylOb <- Q4 & QIG;

ORY10 <- ANDylOaout & ANDylObout & Q6 &QO &Qi & Q12 & Q3 & Q8;

g35: ANDm
port map ( ANDylOa, ANDylOaout);

g36: ANDm
port map ( ANDyl~b, ANDylObout);

g37 : ORm
port map ( ORYlO, Y10);

-Logic to derive Y11

-Yb] - q3 and q9 and qIG

ANDyll] <- Q3 & Q9 & QIO;

g38: ANDm
port map ( ANDyll], Y11);

-Logic to derive Y12
-Y12 = qil and rshift

ANDy12 <- Qil & RSHIFT;

g39: ANIm
port map ( ANDy12 , Y12);

-Logic to derive YIO

-YIO - q3 or (q4 and STORE)

ANDyiO <- Q4 &STORE;

ORyiO <- Q3 &ANDyi~out;

g40: ANDm
port map ( ANDyiO, ANDyi~out);

g4l: ORm
port map ( ORyiO, YIO);

-Logic to derive YRO

-YRO - q3 and (load or add or and)

ORyrO <- LOAD & ADD & AND;
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g42: ORm
port map ( ORyrO, ORyr0out);

ANDyrO <- ORyr0out & Q3;

g43: ANDm
port map ( ANDyrO, YRO);

-- Registers:

FF0 : D ff
port map ( YO, QO, CLOCK, CLEAR, SET );

FF1 : D ff
port map ( Y1, Q1, CLOCK, CLEAR, SET );

FF2 : D ff
port map ( Y2, Q2, CLOCK, CLEAR, SET );

FF3 : D ff
port map ( Y3, Q3, CLOCK, CLEAR, SET );

FF4 : D ff
port map ( Y4, Q4, CLOCK, CLEAR, SET );

FF5 : D ff
port map ( Y5, Q5, CLOCK, CLEAR, SET );

FF6 : D ff
port map ( Y6, Q6, CLOCK, CLEAR, SET );

FF7 : D ff
port map ( Y7, Q7, CLOCK, CLEAR, SET );

FF8 : D ff
port map ( Y8, Q8, CLOCK, CLEAR, SET );

FF9 : D ff
port map ( Y9, Q9, CLOCK, CLEAR, SET );

FF10 : D ff
port map ( Y10, Q10, CLOCK, CLEAR, SET );

FF11 : D ff
port map ( Yll, Q11, CLOCK, CLEAR, SET );

FF12 : D ff
port map ( Y12, Q12, CLOCK, CLEAR, SET );

FFI0 : D ff
port map ( YIO, QI0, CLOCK, CLEAR, SET );

FFRO : D ff
port map ( YRO, QR0, CLOCK, CLEAR, SET );
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-- SET UP INITIAL STATE:

when INTIALIZE select
Qinit <- 000010000000000" when '1',
Qinit <- OZZZZZZZZZZZZZZZO when others;

QO <- Qinit( 0);

Q2 <- Qinit( 2);
Q2 <- Oinit( 3);
Q4 <- Qinit( 4);
Q4 <- Qinit( 5);
06 <- Qinit( 6);
Q6 <- Qinit( 7);
08 <= Qinit( 8);
09 <- Qinit( 8);
Q90 <- Qinit( (1);

Q0 <= Qinit(12);

Q10 <- Qinit (13);
QRO <= Qinit(14);

-Drive outputs:

Control bus( 0) <= 00;
Control-bus( 1) <= 01;
Control-bus( 2) <- Q2;
Control-bus( 3) <- 03;
Control-bus( 4) <- 04;
Control-bus( 5) <= 05;
Control bus( 6) <- 06;
Control bus( 7) <- Q7;
Control-bus( 8) <- Q8;
Control bus( 9) <= 09;
Control bus(1O) <= Q10;
Control-bus(11) <= 011;

Control bus(12) <- 012;

end STRUCTURAL;
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The following VHDL code creates an incorrect controller response to the JUMPZ instruction.

This combinational logic code which derives Y1O0 (the input signal for D flip-f lop FF1 0) was substituted

for the correct version in the controller VHDL code to produce an incorrect controller version.

-- Logic to derive Y10
-- ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

-- Y10 should be:
-- Y10 - (JUMPZ and ZeroFlag and CII) or (c4 and qWRITEnot) or
-- c6 or cO or cl or c12 or c2 or c8
-- But instead it's:
-Y10 - (JUMPZ and ZeroFlagnot and Cll) or (c4 and qWRITEnot) or

-- c6 or cO or cl or c12 or c2 or c8

ANDyi~a <- JUMPZ & ZERO_-FLAGnot & Cll;
ANDylOb <- C4 & QWRITEnot;
ORY10 <- ANDylOaout & ANDylObout & C6 & CO & C1 & C12 & C2 & C8;

g35: ANDm
port map ( ANDyi~a, ANDylOaout);

g36: ANDm
port map ( ANDyl~b, ANDylObout);

g37: ORm
port map ( ORYlO, Y10);
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use work.BASICDEFS.all;
--use work.CPU_package.all;
use STD.SIMULATOR STANDARD.all;
use STD.TEXTIO.all;

entity TESTBENCH is
end TESTBENCH;

architecture structuralCPU_588 of TEST BENCH is

component CPU CONTROLLER1
-- generic ();

port ( INSTR2 in logic mv;
INSTRl in logic my;
INSTRO in logic my;
C12 inout wired-outputs logicmv 'U';
Cll inout wired_outputs logic mv 'U';

CI0 inout wired_outputs logicmv 'U';
C9 : inout wired outputs logic mv 'U';
C8 : inout wiredoutputs logic_mv 'U ;
C7 : inout wired outputs logic mv 'U';
C6 : inout wiredoutputs logicmv 'U';
C5 : inout wired_outputs logic mv 'U';
C4 : inout wired_outputs logicmv: 'U';
C3 : inout wired-outputs logic mv := 'Ug;

C2 : inout wired outputs logic my 'U';
Cl : inout wiredoutputs logicmv: 'U';
CO : inout wired_outputs logicmv 'U';
CLOCK in logic_mv;
ZERO FLAG in logic_mv;
INITIALIZE in logic mv

end component;

for UUTI CPUCONTROLLER1 use
entity WORK.CPUCONTROLLERI(STRUCTURAL);

for UUT2 CPUCONTROLLER1 use
entity WORK.CPUCONTROLLER1(STRUCTURAL_bogus);

signal INITIALIZE : logic_my :- 'U';
signal CLOCK : logic_my := 'U';
signal Instruction : logic mv vector (2 downto 0);
signal Control good,

Control_bogus logicvector my := "UUUUUUUUUUUUU";

begin

process
file CPU INSTRUCTIONS : TEXT is in "CPUINSTRUCTIONS";
variable L : Line;

variable temp_instruction bit vector (4 downto 0);
variable temp2_instruction bit-vector (4 downto 0);
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begin

readline(CPUINSTRUCTIONS, L);
if ENDFILE(CPUINSTRUCTIONS) then terminate; end if;
read(L, temp_instruction);

case tempinstruction is
when '0' > ZeroFlag <= '0';
when '1' > ZeroFlag <= '1';

end case;

wait until Controlgood - "0000000001000";

case temp_instruction is
when "000" => instruction <= "000";
when "001" -> instruction <= "001";
when "010" > instruction <= "010";
when "011" > instruction <= "011";
when "100" => instruction <= "100";
when "101" => instruction <= "101";
when "110" => instruction <= "110";
when "111" > instruction <= "111";

end case;
end process;

process
begin

set maximums (10000, 100);
tracing_on;
wait for 1500ns;
terminate;

end pro'-ess;

make Clock : process
begin

wait for 2ns;
CLOCK <- '0';
wait for 4ns;
CLOCK <= '1';

wait for 2ns;
end pioceis makeClock;

UUT1 CPUCONTROLLER1
port map( Instruction(2),

Instruction(1),
Instruction (0),
Control_good%(12),
Control_good(ll),
Control_good(l0),
Control_good( 9),
Controlgood( 8),
Controlgood( 7),
Control_good( 6),
Control_good( 5),
Control_good( 4),
Control_good( 3),
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Control_good( 2),
Control_good( 1),
Controlgood( 0),
CLOCK,
ZEROFLAG,
INITIALIZE

UUT2 CPU CONTROLLER1
port map( Instruction (2),

Instruction (),
Instruction (0),
Controlbogus(12),
Controlbogus(ll),
Controlbogus (10),
Controlbogus( 9),
Controlbogus( 8),

Controlbogus( 7),
Controlbogus( 6),
Controlbogus( 5),
Controlbogus( 4),
Controlbogus( 3),
ConLrolbogus( 2),
Controlbogus( 1),
Control bogus( 0),
CLOCK,
ZEROFLAG,

INITIALIZE

end structuralCPU_588;
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The following two files reflect the Unix script file and its results which automatically processed

the two cpu VHDL files invoking preverif and verif.

date

time steed -vhdl -enum cpu_588s.vhd

time mv verif.input cpu_588s.verif

time steed -vhdl -enum cpu_588sbogus.vhd

time mv verif.input cpu_588sbogus.verif

time /olympus3/eng/rlmiller/verif/verif cpu_588s.verif cpu_588sbogus.verif

date

olympus> !Cpu
cpu_588_veriftimer > timerstuff

Tues Oct 30 10:34:55 EDT 1990

# steed -vhdl -enum cpu_588s.vhd
#Circuit Summary:
# Entity name : CPU CONTROLLER1

# Architecture : STRUCTURAL
#---------------
#number of gates = 42
#number of wires = 62
#number of inputs = 4
#number of outputs - 13
#number of latches - 16

#steed: cputime for reading in circuit: 0.3s 0.3s

#steed: cputime for levelling circuit: 0.Os 0.4s

#steed: cputime for rearranging gate inputs: 0.0s 0.4s

#steed: cputime for creating dummy gates: 0.0s 0.4s

#number of equivalent faults - 190
#steed: cputime for generating fault list: C.Os 0.4s

#steed: cputime for miscellaneous allocation: 0.Os 0.4s

#Memory required for all covers = 438.000000 bytes

#steed: cputime for generating the partial covers : 0.5s 0.9s
#steed: cputime for all processes: 0.Os 0.9s
OUTPUT PRODUCED IN FILE verif.input

1.6 real 0.9 user 0.4 sys

0.1 real 0.0 user 0.0 sys

# steed -vhdl -enum cpu_588sbogus.vhd
#Circuit Summary:
# Entity name : CPUCONTROLLERI
# Architecture : STRUCTURAL_bogus
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#nu--r-ofgate--- 4
#number of gates - 42
#number of wires - 62

#number of inputs - 4
#number of outputs = 13
#number of latches - 16

#steed: cputime for reading in circuit: 0.4s 0.4s
#steed: cputime for levelling circuit: 0.0s 0.4s
#steed: cputime for rearranging gate inputs: 0.Os 0.4s
#steed: cputime for creating dummy gates: 0.0s 0.4s
#number of equivalent faults = 190
#steed: cputime for generating fault list: 0.0s 0.4s
#steed: cputime for miscellaneous allocation: 0.Os 0.4s
#Memory required for all covers = 438.000000 bytes
#steed: cputime for generating the partial covers : 0.5s 0.9s
#steed: cputime for all processes: 0.Os 0.9s
OUTPUT PRODUCED IN FILE verif.input

1.6 real 0.9 user 0.5 sys
0.1 real 0.0 user 0.0 sys

# Machine 1 inputs 4 outputs 13 latches 16
# Machine 2 inputs 4 outputs 13 latches 16
#Time to read in covers : 8.800000e-01 secs
#MACHINES ARE DIFFERENT
#THE DISTINGUISHING SEQUENCE IS
-- 1-

--1-
--1-
--1-
1010

Number of states - 15
Number of edges = 36
Number of entries - 9
Number of save difs = 0
#Time for verification : 3.300000e-01 secs
#Total user time : 1.210000e+00 secs

Tues Oct 30 10:35:04 EDT 1990

olympus>
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The following two files reflect the unix script file and its result which automatically invoked the VHDL

software support environment in order to process the cpu VHDL files through the VHDL simulator.

date

time vhdl cpu_588s.vhd

time mg "cpu_controllerl(structural)"

time vhdl cpu_588sbogus.vhd

time mg "cpu_controllerl(structuralbogus)"

time vhdl testbenchcpu

time mg -top "testbench(structuralcpu_588)"

time build -replace "testbench(structural_cpu_588)"

time sim structural_cpu_588

time rg structural_cpu_588 cpu.rcl

date

atlas% cpu_588_timer
Wed Sep 5 10:09:53 EDT 1990

Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

73.6 real 46.2 user 6.2 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

554.7 real 452.7 user 30.8 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

58.4 real 38.7 user 5.0 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

505.8 real 445.5 user 24.1 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

57.3 real 30.6 user 6.1 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

135.1 real 97.9 user 8.7 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
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Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

62.4 real 28.6 user 9.3 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

%VHDSIM-N-SIGTRAN Signal Tracing turned on

%VHDSIM-N-SIGTRAN Signal Tracing turned on after 0 fs

%VHDSIM-N-TRANSOV Transaction Limit Exceeded after 350 ns

%VHDSIM-N-TERMINA Explicit Termination requested after 1238 ns

205.0 real 180.3 user 5.5 sys

Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

55.9 real 39.2 user 11.3 sys
Wed Sep 5 10:38:32 EDT 1990
atlas%
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